Koosehlar E, Mohabatkar H, Behbahani M. In Silico and In vitro Evaluations of the Antibacterial Activities of HIV-1 Nef Peptides against Pseudomonas aeruginosa. Int J Mol Cell Med 2024; 13 (1) :46-63
URL:
http://ijmcmed.org/article-1-2040-en.html
1- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran.
2- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran. , Ma_behbahani@yahoo.com
Abstract: (767 Views)
One of the burning issues facing healthcare organizations is multidrug-resistant (MDR) bacteria. P. aeruginosa is an MDR opportunistic bacterium responsible for nosocomial and fatal infections in immunosuppressed individuals. According to previous studies, efflux pump activity and biofilm formation are the most common resistance mechanisms in P. aeruginosa. The aim of this study was to propose new antimicrobial peptides (AMPs) that target P. aeruginosa and can effectively address these resistance mechanisms through in silico and in vitro assessments. Since AMPs are an attractive alternative to antibiotics, in vitro experiments were carried out along with bioinformatics analyses on 19 Nef peptides (derived from the HIV-1 Nef protein) in the current study. Several servers, including Dbaasps, Antibp2, CLASSAMP2, ToxinPred, dPABBs and ProtParam were used to predict Nef peptides as AMPs. To evaluate the binding affinities, a molecular docking analysis was performed with the HADDOCK web server for all Nef peptide models against two effective proteins of P. aeruginosa (MexB and PqsR) that play a role in efflux and quorum sensing. Moreover, the antibacterial and antibiofilm activity of the Nef peptides was investigated in a resistant strain of P. aeruginosa. The results of molecular docking revealed that all Nef peptides have a significant binding affinity to the abovementioned proteins. Nef-Peptide-19 has the highest affinity to the active sites of MexB and PqsR with the HADDOCK scores of -136.1 ± 1.7 and -129.4 ± 2, respectively. According to the results of in vitro evaluation, Nef peptide 19 showed remarked activity against P. aeruginosa with minimum inhibitory and bactericidal concentrations (MIC and MBC) of 10 µM and 20 µM, respectively. In addition, biofilm inhibitory activity was observed at a concentration of 20 µM. Finally, Nef peptide 19 is proposed as a new AMP against P. aeruginosa.
Type of Study:
Original Article |
Subject:
Infectious disease (Molecular and Cellular aspects) Received: 2022/11/15 | Accepted: 2024/05/29 | Published: 2024/06/26