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It has been suggested that single nucleotide palyhiems (SNPs) in genes involved in Toll-like retoep
(TLRs) pathway may exhibit broad effects on functad this network and might contribute to a ranfi@uman
diseases. However, the extent to which these i@m@taffect TLR signaling is not well understood. this
study, we adopted a bioinformatics approach to iptethe consequences of SNPs in TLRs network. The
consequences of non-synonymous coding SNPs (nsSN&®) predicted by SIFT, PolyPhen, PANTHER,
SNPs&GO, I-Mutant, ConSurf and NetSurf tools. Stuual visualization of wild type and mutant proteias
performed using the project HOPE and Swiss PDB eieWhe influence of'8JTR and 3 UTR SNPs were
analyzed by appropriate computational approachéset®en nsSNPs in TLRs pathway genes were found to
have deleterious consequences as predicted byothbiration of different algorithms. Moreover, o@sults
suggested that SNPs located at UTRs of TLRs patlggags may potentially influence binding of traipstoon
factors or microRNAsBY applying a pathway-based bioinformatics analg$igenetic variations, we provided
a prioritized list of potentially deleterious varta. These findings may facilitate the selectiopmiper variants
for future functional and/or association studies.

K ey words: Bioinformatics;in-silico analysis; single nucleotide polymorphisms; takelreceptors

Toll—like receptors (TLRs) are a major class of leading to the induction of genes that regulate the
the pattern- recognition receptors of the innate  expression of pro- inflammatory cytokines and
immune system involved in the identification of chemokines (3-4). Due to the critical roles of TLRs
pathogen-associated molecular patterns (PAMPs) signaling network in the initiation of innate immain
from infectious pathogens (1-2). These trans- responses, malfunction of genes involved in this
membrane proteins engage with PAMPs and trigger pathway may predispose individuals to numerous
activation of intracellular signaling cascades, human diseases ranging from infectious and chronic
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inflammatory to cancers and autoimmune diseases
(5-6).

Accumulating evidence now suggests that
genetic variations in TLRs pathway genes may
exhibit deleterious effects on gene function, legdi
to the dysregulation of this signaling pathways (7-
8). Single nucleotide polymorphisms (SNPs) are the
shortest and the most frequent variations in the
human genome. Among these, the functional
consequences of untranslated regions (UTRs) and
non-synonymous (nsSNPs) SNPs are of special
interest, as they can either modulate gene
expression or influence protein structure and
function (9-10). Although the contribution of SNPs
in TLR signaling to human pathological states was
addressed by several studies, a comprehensive and
prioritized list of SNPs potentially affecting the
function and regulation of this pathway is still
lacking. Therefore, this study aimed to
systematically identify the UTR-SNPs and nsSNPs
in genes involved in TLRs signaling network by
employing a bioinformatics approach and
predicting their deleterious functional and struatu
consequences.

Materials and methods

Retrieving SNPsin TLRs pathway genes

Data on the human TLRs pathway genes were
collected from national center for biological
information (http://www.ncbi.nlm.nih.gov/) (acce-
ssed May 2015) (Table 1). Genes implicated in
TLRs pathway and their functional connections
were retrieved by querying Kyoto encyclopedia of
genes and genomes (KEGG) (http:// www.
genome.jp/ kegg/) (accessed May 2015) (Figure 1).
SNPs located in TLRs network genes were
retrieved from dbSNP (http:// www. ncbi. nim. nih.
goVv/SNP/) (accessed June 2015). For each SNP, the
following information was recorded: SNP ID,
genomic coordinate, and variation type. Protein
information of TLR network genes was retrieved
from UniProt (http: // www. uniprot.org/) (accessed
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June 2015).
Predicting UTR-SNPs consequences

To evaluate the conservation scowe used
genomic evolutionary rate profiling (GERP) track
implemented in UCSC (https://genome.ucsc.edu/)
to calculate the GERP++conservation score for
each SNPs. Genomic Evolutionary Rate Profiling
(GERP) is a method for producing position-specific
estimates of evolutionary constraint using
maximum likelihood evolutionary rate estimation.
Constraint intensity at each individual alignment
position is quantified in terms of a "rejected
substitutions" (RS) score, defined as the number of
substitutions expected under neutrality minus the
number of substitutions "observed" at the position.
Positive scores represent a substitution defigit, (i
fewer substitutions than the average neutral site)
and thus indicate that a site may be under the
evolutionary constraint. Negative scores indicate
that a site is probably evolving neutrally; negativ
scores should not be interpreted as evidence of
accelerated rates of evolution because of too many
strong confounders, such as alignment uncertainty
or rate variance.

The effects of UTR-SNPs on local RNA
secondary structure were predicted using mode 1 of
RNAsnp program (v 1.1). The software requires
RNA sequence and SNP as inputs and uses a
window of 400 nucleotides, 200 nucleotide on
either side of the SNP position to obtain
subsequences and generate the base-pairing
probability matrix for the corresponding wild type
and mutant alleles. Then, RNAsnp computes the
Euclidian distance (d) and Pearson correlation
coefficient (r) for all sequence intervals with a
minimum length of 50 that have self-contained base
pairs to assess structural difference between the
wild type and mutant alleles and reports the irgkrv
with the maximum base pairing distance (dmax) or
minimum correlation coefficient (rmin) along with
the corresponding empirical p-value (11). Here, we
used both measures independently and defined
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structure disruptive UTR-SNPs as those with
significant dmax or rmin (significance threshold is
p< 0.2 as defined by RNAsnp).

RegulomeDB Version 1.1 (12) was used to
annotate UTR-SNPs with known and predicted
regulatory elements of the genome including the
regions of DNase hypersensitivity, binding sites
and motifs of transcription factors, chromatin estat
and the expression of quantitative trait loci.

To have further annotations, we identified 3'-
UTR SNPs residing in microRNAs target sites. A
comprehensive dataset of experimentally supported
mMiRNAs target sites, including CLIP-Seq supported
interactions from starBase version 2 (http://
starbase.sysu.edu.cn/) (13) and CLASH verified
interactions extracted from PolymiRTS database,
were compiled (http://compbio.uthsc.edu/miRSNP/)
(14).

Table 1. TLR signaling pathway genes list.

Name GenelD L ocation MIM Number of SNPs
1 TLR1 7096 Chr 4 601194 321
2 TLR2 7097 Chr 4 603028 537
3 TLR3 7098 Chr 4 603029 400
4 TLR4 21898 Chr9 603030 606
5 TLR5 7100 Chr1 603031 790
6 TLR6 10333 Chr 4 605403 854
7 TLR7 51284 Chr X 300365 544
8 TLR8 51311 Chr X 300366 270
9 TLR9 54106 Chr 3 605474 509
10 MYD88 4615 Chr3 602170 123
11 TIRAP 114609 Chr 11 606252 267
12 IRAK1 3654 Chr X 300283 235
13 IRAK4 51135 Chr 12 606883 601
14 TRAF6 7189 Chr 11 602355 579
15 TRAF3 7187 Chr 14 601896 2570
16 TAB1 10454 Chr 22 602615 1989
17 TAB2 23118 Chr 6 605101 3967
18 MAP3K7 6885 Chr 6 602614 1267
19 IKBKG 8517 Chr X 300248 222
20 IKBKB 3551 Chr 8 603258 1376
21 CHUK 1147 Chr 10 600664 750
22 NFKBIA 4792 Chr 14 164008 143
23 NFKB1 4790 Chr4 164011 2060
24  MAP2K1 5604 Chr 15 176872 2124
25 MAPK1 5594 Chr 22 176948 2335
26  MAP2K3 5606 Chr 17 602315 1329
27 MAP2K7 5609 Chr 19 603014 317
28 MAPK14 1432 Chr 6 600289 1778
29 MAPKS8 5599 Chr 10 601158 2450
30 FOs 2353 Chr 14 164810 101
31 TICAM1 148022 Chr 19 607601 438
32 RIPK1 8737 Chr 6 603453 1322
33 IKBKE 9641 Chr1 605048 696
34 TBK1 29110 Chr 12 604834 895
35 IRF3 3661 Chr 19 603734 199
36 IRF5 3663 Chr7 607218 284
37 IRF7 3665 Chr 11 605047 173
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Fig. 1. Schematic presentation of gene network implicat€fLR signaling pathway. Direction of signal traostion is exhibited by arrows.

Analyzing the functional and structural conse-
guences of non- synonymous SNPs

Phenotypic effects of amino acid substitution
on protein function were predicted by Sorting
intolerant from tolerant (SIFT) (http:/sift.jcvigy/).

In this study, a list of nsSNPs (rsIDs) from
NCBI's dbSNP database was submitted as a query
sequence to SIFT to predict tolerated and
deleterious substitutions for every position of
sequence. nsSNPs with SIFT scafe05 were
classified as deleterious and those>0.05 were
classified as tolerated (15).

Polymorphism Phenotyping-2 (PolyPhen-2)
(http://genetics.bwh.harvard.edu/ pph2/) predicts
possible impact of an amino acid substitution @ th
structure and function of a human protein using
straightforward physical and comparative conside-
rations. Input options for this tool are comprisgd
protein sequence, database ID/ accession number
and details of amino acids substitution. For a ive
substitution, prediction outcome can be one of
possibly damaging, probably damaging, and benign
(16).

Protein analysis through evolutionary relati-
onships (PANTHER]http:// www.pantherdb. org/)
estimates the likelihood of a particular nsSNPs to
cause a functional impact on the protein. This tool

calculates the substitution position-specific
evolutionary conservation (sSubPSEC) score based
on an alignment of evolutionarily related proteins.
The subPSEC scores are continuous values from 0
(neutral) to about -10 (most likely to be
deleterious). A cutoff of -3 corresponds to a 50%
probability that a score is deleterious. From ttiis,
probability that a given variant will cause a
deleterious effect on protein function is estimated
by Pdeleterious, such that a subPSEC score of -3
corresponds to a Pdeleterious of 0.5 (17).

SNPs database and gene ontology (GO)
(http://snps.biofold.org/snps-and-go/snps-and-
go.html) have been optimized to predict if a given
single point protein variation can be classified as
disease associated or neutral. A probability > 0.5
indicates that the mutation at the protein isaigse
related (18).

ConSurf web-server (http://consurf.tau.ac.il/)
is a bioinformatics tool for estimating the
evolutionary conservation of amino acid positions
in a protein molecule based on the phylogenetic
relations between homologous sequences. The
continuous conservation scores are divided into a
discrete scale of nine grades for visualizatioair
the most variable positions (grade 1) colored turqu
oise, through intermediately conserved positions
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(grade 5) colored white, to the most conserved
positions (grade 9) colored maroon.

I-Mutant (http:// folding. uib.es/ i-mutant/ i-
mutant 2.0.html) is a neural network based web
server for the automatic prediction of protein
stability changes upon amino acid substitutionsThi
tool provides the scores for free energy alteration
DDG<0 and DDG> 0 indicate reduction and
elevation of the stability, respectively (19).

NetSurfp (http: //www. cbs.dtu. dk/services
INetSurfP/) predicts the relative and absolute
surface accessibility and secondary structure of
residues in amino acid sequences. The reliabifity o
the surface accessibility prediction is statedhe t
form of a Z-score, which cannot predict secondary
structures of proteins (20).

Project Have your Protein Explained (Project

HOPE) (http://www.cmbi.ru.nl/hope/home) has
been used to study the insight structural featafes

native protein and the variant models (21). This
web server provides three dimensional structural
visualization of mutated proteins, and gives the
results by using UniProt and DAS prediction
servers.

SNP analysis

Mining the dbSNP-NCBI and UniProt
databases revealed a total of 35802 SNPs in thirty-
seven candidate genes in TLRs pathway (Table 2).
Among these, 819 and 2502 were located4dBR
and 3-UTR respectively, and 2172 were identified
as nsSNPs.

Table 2. Summary results of SNPs mining of candidate gén&&Rs signaling pathway

Categories Number of SNPs
Synonymous 1382
exon
) Non-synonymous 2172
Intragenic Intron 28654
Unknown 273
) 3-UTR 2502
Intergenic
5-UTR 819
Total 35802
0.15-
>
g 0.10 - %.BUTR
(5]
= 5'UTR
0.05 -
0.00 -
—1‘0 5 0 é

RS score

Fig. 2. Density plot of GERP++ conservation score (RS scdreg figure shows that 5’UTR SNPs have higher (more

positive) score than 3'UTR SNPs.
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Fig. 3. Structure disruptive UTR SNR3 TLR genes. SNPs positioned above dashed linthase with dmax p-value< 0.2, and hence,
designated to be structure disruptive.

Table 3. Common 3'UTR SNPs resided in miRNA target sites

NFKBIA hsa-miR-208a-3p rs696 0.46 0.07
MYD88 hsa-miR-520f-3p rs7744 0.14 0.86
TAB2 hsa-miR-4500 rs7896 0.20 0.27
MAPK14 hsa-miR-4306 rs8510 0.18 0.45
MAPK1 hsa-miR-210-3p rs9340 0.33 0.21
MAPK1 hsa-miR-186-5p rs13058 0.04 0.01
MAP3K7 hsa-miR-212-3p rs2131906 0.04 0.38
MAPK14 hsa-miR-381-3p rs3804451 0.13 0.35
IRAK4 hsa-miR-340-5p rs4251562 0.04 0.90
MAP3K7 hsa-miR-212-3p rs9451441 0.01 0.43
TAB2 hsa-miR-33a-5p rs35859918 0.01 0.47
MAPK1 hsa-miR-217 rs41282607 0.01 0.08
TAB2 hsa-miR-539-5p rs41288431 0.01 0.82
MAPK1 hsa-miR-488-3p rs61757976 0.01 0.76
TRAF3 hsa-miR-4500 rs72704737 0.29 0.12

Target miRNA SNP MAF g..p-value

Conservation score of UTR SNPs

We computed GERP++scores for SNPs in
UTRs, which
conservation extent based on alignment of 35

represent an  evolutionary
mammals to hgl9. Generally;-8TR SNPs were
found to be more conserved thahUTR SNPs
(Figure 2). With a cut off RS score »f2, a total of
480 constrained SNPs (including 85WIR-SNPs
and 395 3UTR-SNPs) were identified. Moreover,

1200 SNPs (including 147-8TR-SNPs and 1059
3-UTR-SNPs) were classified as neutrally
evolving, which represents a RS score<6f The
most conserved SNPs were found iRUFR of
TAB2 (rs138687718, RS score= 6.1MNIAPK14
(rs377447706, RS score= 6.17) an#&OS
(rs45480193, RS score= 6.16).

Influence of UTR-SNPs on RNA secondary
structures

Int J Mol Cell Med Spring 2016; Vol5No 2 70
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Our analysis showed that 313 UTR-SNPs
were structure disruptive as defined by dmax p-
value P<0.2 (Figure 3). Considering both dmax and
rmin, there were 232 unique structure disruptive
UTR-SNPs. The top five genes enriched for
structure disruptive SNPs weMAPK14 (n= 23),
TLR7 (n= 12),TLR4 (n= 10),MAPK1 (n= 10), and
TRAF3 (n= 8).

Annotation of SNPswith regulatory elements

Disease associated variants are enriched in
regulatory elements of the genome. Using
RegulomeDB, we annotated UTR-SNPs within
regulatory elements. 11 UTR-SNPs were associated
with transcription factor binding sites (i.e eQTL).

These SNPs were found within 3'UTR 8RBl
(rs1010169, rs1010170, rs5757650, rs5750822),
RIPK1 (rs9503383, rs9405606)RF5 (rs752637,
rs3807306), IRAK4 (rs4251425) and TLR9
(rs187084) genes.

Identification of SNPsresiding in miRNA target
sites

3UTR-SNPs  with  the
experimentally validated miRNAs target site

Intersecting

datasets, we found 314 SNPs resided in microRNAs
target sites. Since miRNA target sites are under
selective pressure, we refined SNPs in miRNA
target sites by minor allele frequency (MAF)
threshold of 0.0Table 3.

Table 4. List of nsSNPs that predicted to be deleterioubdiyn PolyPhen-2 and SIFT tools

Gene SNP Allele AA PolyPhen  PolyPhenP  SIFT SIFT

Symbol substitution  Score erediction Score prediction
1 CHUK rs56948661 G>A P623L 1 P.D 0.01 Damaging
2 CHUK rs61732515 C>G Q277H 0.999 P.D 0.00 Damaging
3 CHUK rs112432667 T>C E492G 0.954 P.D 0.00 Damaging
4 FOS rs74685695 T>G V77G 0.999 P.D 0.01 Damaging
5 IRF5 rs112815033 T>C L450P 1 P.D 0.01 Damaging
6 IRAK4 rs55944915 G>A R391H 0.999 P.D 0.01 Damaging
7 IRAK4 rs114820168 C>T R391C 1 P.D 0.00 Damaging
8 MAP3K7 rs77759048 A>T W55R 1 P.D 0.00 Damaging
9 TBK1 rs34774243  A>G K291E 0.997 P.D 0.00 Damaging
10 TBK1 rs55824172 C>T S151F 0.997 P.D 0.00 Damaging
11  TIRAP rs74937157 T>C C134R 1 P.D 0.00 Damaging
12 TLR1 rs5743621 G>A P733L 0.995 P.D 0.00 Damaging
13 TLR1 rs41311402 A>G L697S 1 P.D 0.00 Damaging
14 TLR1 rs56205407 A>G 1679T 0.999 P.D 0.00 Damaging
15 TLR1 rs117033348 A>G L144P 1 P.D 0.04 Damaging
16  TLR2 rs5743706 T>A Y715N 1 P.D 0.01 Damaging
17 TLR2 rs56303479  T>C L81P 1 P.D 0.00 Damaging
18 TLR2 rs121917864 C>T R677W 1 P.D 0.00 Damaging
19 TLR3 rs5743316 A>T N284| 1 P.D 0.00 Damaging
20 TLR3 rs112666655 T>C L545P 1 P.D 0.00 Damaging
21 TLR3 rs111488413 C>A P880Q 1 P.D 0.00 Damaging
22 TLR4 rs77214890 G>T D181Y 1 P.D 0.00 Damaging
23 TLR4 rs80197996 G>T L470F 1 P.D 0.03 Damaging
24 TLR4 rs55905951 C>G A676G 1 P.D 0.00 Damaging
25 TLR4 rs55786277 C>T R804W 0.999 P.D 0.01 Damaging
26 TLR5 rs5744176 T>C D694G 1 P.D 0.01 Damaging
27 TLR5 rs78098893 T>C R752G 0.997 P.D 0.01 Damaging
28 TLR6 rs13102250 A>C L105W 1 P.D 0.01 Damaging
29 TLR9 rs55881257 G>A R962C 1 P.D 0.01 Damaging

Abbreviations: P.D; probablydamaging
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Fig. 4. Distribution of SIFT and PolyPhen score of SNPsdding region. Horizontal and vertical dashedlireel correspond to the

thresholds for predicting deleterious variants biyPhen and SIFT, respectively.

Prediction of tolerated and deleterious non-
synonymous SNPs by SIFT

SIFT analysis predicted that a total of 785 nsSNPs
were damaging (scofg 0.05) and 1322 nsSNPs
had tolerated effects on the candidate genes
involved in TLR pathway network (score> 0.05)
(Figure 4).

Prediction of damaging non-synonymous SNPs

by PolyPhen-2

According to our Polyphen-2 results, 610
nsSNPs were predicted “probably damaging”, 353
nsSNPs were predicted “possibly damaging” and
1068 were classified as benign (Figure 4). To
increase the accuracy of predictions, results BT SI
and PolyPhen-2 were joined and SNPs with
PolyPhen score> 0.95 and SIFT< 0.05 were
selected. Accordingly, 29 nsSNPs passed both
criteria and were classified as deleterious/dangagin
(Table 4).

Prediction of functional impact of non-
synonymous SNPs on protein by PANTHER and
SNPs & GO.

According to the PANTHER results, all 29
SNPs possessed the subPSEC score more than -3
and were therefore classified as deleterious (Table
5). As shown in table 5, these SNPs were found to

be as disease-associated with the probability >0.5
after analyzing by SNPs & GO.
Prediction of protein stability analysis by |-
M utant

According to I- Mutant results, all mutations
expect N284l (rs5743316 inTLR3), S151F
(rs55824172 inTBK1) and L105W (rs13102250 in
TLR6) were predicted to decrease protein stability,
with a free energy change value <0.0 (Table 6).
Prediction of evolutionary conservation of amino
acid position by ConSurf

Our ConSurf analysis revealed that all 29
expected SNPs including the Q277HHUK),
E492G CHUK), L450P (RF5), W55R MAP3K7),
K291E (TBK1), C134R TIRAP), 1679T (TLRY),
L545P {TLR3), R804W [TLR4) and R752G TLR5)
were located in highly conserved regions and
predicted to have functional and structural impacts
on TLRs pathway proteins (Table 6).
In silico solvent accessibility and three
dimensional analyzes of native and mutant
protein structures

By combining the results of SIFT, Poly-phen-
2, PANTHER, SNPs & GO, I|-Mutant 2.0, and
ConSurf servers, 19 mutations were found to be
more deleterious in candidate genes. Subsequently,
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these mutations were analyzed for solvent type and mutant protein containing the mentioned

accessibility and stability, and the results were  deleterious variants was performed using the
represented in the following paragraphs (see also project HOPE and Swiss PDB viewer.

Table 7). Visualization of structural features afdw

Table5. PANTHER and SNPs&GO results for prediction of SNBglisease associated.

PANTHER SNPs& GO
SNPs Substituti  subPSEC Pdeleterious  Prediction RI Probability
on

1 rs56948661  P623L -4.92855 0.87309 Disease 5 0.742
2 rs61732515 Q277H -4.61589 0.83423 Disease 0.527
3 rsl112432667 E492G -3.99182 0.72945 Disease 4 0.711
4  rs74685695 V77G -4.06862 0.74433 Disease 0.545
5 rs112815033 L450P -4.36601 0.79674 Disease 0 0.523
6 rs55944915 R391H -3.64924 0.65684 Disease 0.525
7 rs114820168 R391C -4.67097 0.84171 Disease 3 0.643
8 rs77759048 W55R -3.3007 0.57461 Disease 0.717
9 rs34774243  K291E -3.56533 0.63768 Disease 5 0.772
10 rs55824172 S151F -4.7119 0.84708 Disease 0.804
11 rs74937157 C134R -3.47178 0.6158 Disease 2 0.619
12 rs5743621 P733L -4.51666 0.82005 Disease 0.623
13 rs41311402  L697S -4.23845 0.77529 Disease 4 0.712
14 rs56205407 1679T -5.35855 0.91361 Disease 0.870
15 rs117033348 L144P -8.17834 0.99439 Disease 5 0.750
16 rs5743706 Y715N -4.34331 0.79303 Disease 0.707
17 rs56303479  L81P -6.4936 0.97051 Disease 7 0.855
18 rs121917864 R677W -6.4688 0.96979 Disease 0.819
19 rs5743316 N284l -3.91448 0.71392 Disease 5 0.748
20 rs112666655 L545P -4.25641 0.77841 Disease 0.823
21 rs111488413 P880Q -8.50881 0.99597 Disease 6 0.811
22 rs77214890 D181Y -4.48068 0.81467 Disease 0.511
23 rs80197996  LA70F -3.94106 0.71931 Disease 4 0.639
24 rs55905951 AB76G -3.16208 0.54043 Disease 0.503
25 rsb5786277  R804W -5.10263 0.89116 Disease 5 0.748
26 rs5744176 D694G -3.42967 0.6058 Disease 0.716
27 rs78098893 R752G -3.16919 0.5422 Disease 2 0.614
28 rs13102250 L105W -5.09383 0.8903 Disease 0.583
29 rs55881257 R962C -4.48094 0.81471 Disease 1 0.547
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Table 6. Summary results of nsSSNPs analysis by I-mutantGomaSurf.

I-mutant ConSurf
Gene SNP AA DDG Stability conservati  Functional or
Symbol substitution  ( Kcal/mol) on scale structural
residue
1 CHUK rs56948661 P623L -0.97 Decrease 9 F
2 CHUK rs61732515 Q277H -1.58 Decrease 7 -
3 CHUK rs112432667 E492G -1.06 Decrease 4 -
4 FOS rs74685695 V77G -5.25 Decrease 9 S
5 IRF5 rs112815033 L450P -1.74 Decrease 8 -
6 IRAK4 rs55944915 R391H -1.32 Decrease 8 F
7 IRAK4 rs114820168 R391C -0.86 Decrease 8 F
8 MAP3K7 rs77759048 W55R -1.71 Decrease 8 -
9 TBK1 rs34774243 K291E -0.82 Decrease 6 -
10 TBK1 rs55824172  S151F 0.01 Increase 9 F
11  TIRAP rs74937157 C134R -1.55 Decrease 8 -
12 TLR1 rs5743621 P733L -1.33 Decrease 8 F
13 TLR1 rs41311402 L697S -1.51 Decrease 9 S
14 TLR1 rs56205407 1679T -1.91 Decrease 8 -
15 TLR1 rs117033348 L144P -0.79 Decrease 9 S
16 TLR2 rs5743706 Y715N -1.65 Decrease 9 S
17 TLR2 rs56303479 L81P -1.24 Decrease 9 S
18 TLR2 rs121917864 R677W -0.83 Decrease 9 F
19 TLR3 rs5743316 N284I 1.23 Increase 9 F
20 TLRS3 rs112666655 L545P -1.10 Decrease 7 -
21 TLR3 rs111488413 P880Q -1.26 Decrease 9 F
22 TLR4 rs77214890 D181Y -0.98 Decrease 8 F
23 TLR4 rs80197996 L470F -0.86 Decrease 9 S
24 TLR4 rs55905951  A676G -1.19 Decrease 9 S
25 TLR4 rs55786277 R804W -0.54 Decrease 6 -
26 TLRS rs5744176 D694G -1.31 Decrease 9 F
27 TLR5 rs78098893 R752G -1.49 Decrease 7 -
28 TLR6 rs13102250 L105W 0.91 Increase 9 S
29 TLR9 rs55881257 R962C -2.62 Decrease 8 F

Abbreviations: DDG; free energy change value (DDG<O0: Decrease Stability, DDG>0: Increase Stability). The pH and the temperature
were set to7 and 25°C for all submissions, respelgti F: functional residue; S: structural residue.

The rs56948661 inCHUK gene leads to some structural changes in protein. Glycine residue
P623L. The residue is located on the surface of the is smaller than valine and this may lead to loss of
protein and mutation of this residue can distuid th the interactions. Furthermore, the mutant residue i
interactions with other molecules or other parts of  more hydrophobic and flexible and can disturb the
the protein. Moreover, the mutation can disturb the  required rigidity of the protein on this positidfor
special backbone conformation induced by proline.  rs114820168 ihRAK4, the wild-type (arginine) and
Conversion of V77G (rs74685695 FODS) causes mutant (cysteine) amino acids differ in size,
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hydrophobicity and charge. The difference in
charge will disturb the ionic interactions of thédwv
type residue with D388, E389 and D398. R391H is
annotated with rs55944915 in dbSNP database.
According to the PISA-database, the mutated
residue is involved in a multimer contact. The new
residue might be too small to make multimer
contacts. In S151F variant, rs55824172T&K1
gene, the mutant residue (phenylalanine) is bigger
and more hydrophobic than the wild-type (serine).
This conversion will cause the loss of hydrogen
bonds in the core of the protein resulting in the
disruption of correct folding.

We found that three SNPs iLR1, including
P733L (rs5743621), L697S (rs41311402) and
L144P (rs117033348), were located in highly
conserved regions and predicted to have functional
and structural impacts on proteins. For P733L, the
mutant residue (leucine) is bigger than the wild-
type (proline) and is located on surface of the
protein, potentially disturbing its interactionsorF
L697S and L144P, the mutant residues are smaller
than the wild-type residues and will cause an empty
space in the core of the protein. In addition, all
three mutations are predicted to have functiondl an
structural influences on TLR2 protein (Figure 5).

j

LJilfgz] —FA158

~—JS183

Fig 6. Hydrogen bonding interactions and clashes of wild type and mutant TL R4 at position 181. A: the wild-type residue (D) for
hydrogen bonds (green discontinuous liwéh L155, V157, A158, L182 and S183; B: substitution of this amino acid with tyrosinel
cause loss of hydrogen bonds with A158, L182 ar@BSMoreover, the mutation showed a network ofteas(pink discontinuous lin|

with A158 and S183 residues.

75 Int J Mol Cell Med Spring 2016; Vol 5 No 2



http://dx.doi.org/10.22088/acadpub.BUMS.5.2.65
https://ijmcmed.org/article-1-451-en.html

[ Downloaded from ijmemed.org on 2025-11-17 ]

[ DOI: 10.22088/acadpub.BUMS.5.2.65 ]

Alipoor B et al.

Supplementary Table 1. Surface accessibility of wild-type and mutant vatsain TLRs network intermediate

molecules.
Gene SNP AA Class AA AA RSA ASA Z-fit
Symbol substitution assignment position score
1 CHUK rs56948661 P623L Exposed P 623 0.544 77.179 1.190
Exposed L 623 0.537 98.306 1.088
2 FOs rs74685695 V77G Buried \Y, 77 0.082 12.58 -0.799
Buried G 77 0.159 12.55 -0.920
3 IRAK4 rs55944915 R391H Exposed R 391 0.500 114.40 -0.611
Exposed H 391 0.520 94.58 -0.727
4 |RAK4 rs114820168 R391C Exposed R 391 0.500 114.40 -0.611
Exposed C 391 0.477 67.04 -0.891
5 TBK1 rs55824172 S151F Buried S 151 0.132 15,52 0.068
Buried F 151 0.116 23.30 -0.048
6 TLR1 rs5743621 P733L Exposed P 733 0.575 81.57 0.687
Exposed L 733 0.569 104.23 0.717
7 TLR1 rs41311402 L697S Buried L 697 0.028 5.05 0.951
Buried S 697 0.030 3.49 0.649
8 TLR1 rs117033348 L144P Buried L 144 0.038 6.92 0.503
Buried P 144 0.035 5.023 0.657
9 TLR2 rs5743706  Y715N Buried Y 715 0.152 32.46 0.193
Buried N 715 0.153 22.39 0.253
10 TLR2 rs56303479 L81P Buried L 81 0.038 6.93 0.362
Buried P 81 0.029 4.10 0.758
11 TLR2 rs121917864 R677W Buried R 677 0.243 55.60 -0.079
Buried w 677 0.255 61.32 -0.088
12 TLR3 rs5743316 N284I Buried N 284 0.083 12.16 -1.686
Buried I 284 0.088 16.33 -1.081
13 TLR3 rs111488413 P880Q Exposed P 880 0.401 56.88 0.150
Exposed Q 880 0.446 79.65 0.108
14 TLR4 rs77214890 D181lY Buried D 181 0.240 34.52 0.528
Buried Y 181 0.258 55.24 0.277
15 TLR4 rs80197996 L470F Buried L 470 0.090 16.40 0.080
Buried F 470 0.089 17.88 0.247
16 TLR4 rs55905951 A676G Buried A 676 0.033 3.62 -0.046
Buried G 676 0.034 2.71 -0.158
17 TLRS rs5744176 D694G Buried D 694 0.164 23.57 -0.270
Buried G 694 0.173 13.64 -0.384
18 TLR6 rs13102250 L105W Buried L 105 0.030 5.51 0.843
Buried w 105 0.031 7.40 0.799
19 TLR9 rs55881257 R962C ExposedExposet R 962 0.419 95.95 0.066
C 962 0.464 65.20 0.045

Abbreviations: RSA: Relative Surface Accessibility; ASA: Absolute Surface Accessibility. Valuesfor wild type and mutant variants

are presented by red and green color respectively

For L81P (rs56303479),because this residue is
part of some interpro domains like leucine-rich
repeat, typical subtype, the interaction between
these domains could be disturbed by the mutation.
The R677W (rs121917864) mutation leads to
substitution of arginine by a bigger and more
hydrophobic residue named tryptophan. The
difference in charge will disturb the ionic
interaction made by the arginine with E649 and

656. The third mutation ofLR2 occurs at position
715 (rs5743706). The hydrophobicity of the wild-
type (tyrosine) and mutant residue (asparagine)
differs and the mutation will cause the loss of
hydrophobic interactions in the core of the pratein
Finally, the size difference between residues makes
that the new residue is not in the correct positmn
make the same hydrogen bond with S646, as the
wild-type residue does. For N284l (rs5743316, in
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TLR3), due to the difference in hydrophobicity
index of residues, the mutation will cause the loss
of hydrogen bonds in the core of the protein and
may lead to incorrect folding of protein. The seton
mutation of TLR3 (rs111488413) causes P880Q.
This mutant residue is bigger than the wild-type
residue and can disturb the protein interactions.
Additionally, the hydrophobicity of the residue
differs; hence, the mutation may cause the loss of
hydrophobic interactions.

Concerning D181Y mutation inTLR4
(rs77214890), the difference in charge will disturb
the ionic interaction made by the original residue
with R234. Moreover, the hydrophobicity of the
native and mutant residue differs. Therefore, this
mutation causes the loss of hydrogen bonds in the
core of the protein leading to disruption of the
correct folding (Figure 6). For rs80197996 (L470F)
in TLR4, the mutant residue (phenylalanine) is
bigger and probably will not fit to bury in the eor
of the protein. In A676G (rs55905951), the mutant
residue is smaller than the wild-type residue. This
will cause a possible loss of external interactions
Furthermore, the mutation may cause the loss of
hydrophobic interactions with other molecules on
the surface of the protein.

Concerning rs5744176 (D694G) BER5, the
wild-type residue forms a salt bridge with K692,
R752 and K753. The difference in charge will
disturb these ionic interactions. Moreover, the
aspartic acid forms a hydrogen bond with N726, but
due to difference in hydrophobicity, the mutation
causes the loss of hydrogen bond. For the L105W
(rs13102250) inTLRG6, the wild-type (leucine) and
mutant (tryptophan) amino acids differ in size. The
wild-type residue was buried in the core of the
protein, but the mutant residue is bigger and
probably will not fit. For rs55881257 (R962C in
TLR9) the charge of the wild-type residue will be
lost; this can cause the loss of interactions with
other molecules or residues. Furthermore, this

77 IntJ Mol Cell Med Spring 2016; Vol 5 No 2

mutation introduces a more hydrophobic residue at
this position, probably resulting to loss of hydeag
bonds.

TLRs signaling pathway plays a key role in
the host innate immune response. Increasing
evidence has suggested that functional SNPs of
genes related to TLRs pathway may contribute to
diseases ranging from chronic inflammatory to
cancers. Since SNPs are the most common genetic
variations in human genome, it is expected that
genes involved in TLRs pathway contains
numerous SNPs. Nevertheless, discriminating
deleterious SNPs with potential effects on disease
susceptibility from tolerated variants is a major
challenge. Therefore, a comprehensive study that
systematically analyzes the effects of such SNPs
can cost-effectively prioritized SNPs for further
analyzes.

In-silico analysis of the deleterious effects of
SNPs may help to improve our understanding on
the biological pathways (22). In this study, we
systematically analyzed the SNPs in different parts
of genes (5UTR, 3-UTR and coding) in TLRs
pathway. A report has suggested that mutation
effect prediction algorithms have their own
strengths and weaknesses, and therefore,
implementing a combination of these tools may
help to enhance the accuracy of effect predictions
(23). In the present study, we combined the results
of the SIFT, PolyPhen, PANTHER, SNPs & GO, I-
Mutant and ConSurf algorithms to prioritize the
damaging nsSNPs and increase the analysis
accuracy. Accordingly, we were able to identify
several potentially deleterious nsSNPs in TLRs
pathway genes. These SNPs, to the best of our
knowledge, have not yet been investigated and
therefore may be considered as candidates for
association with diseases. These results may pave
the ground for future functional and/or association
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studies and facilitate the process of choosing
functional variant for further analyses.

UTR-SNPs play important roles in gene
regulation and accumulating evidence has indicated
their contribution to different diseases. Sequence
alteration in these regulatory elements has been
shown to interfere with transcription factors or
microRNA binding, leading to gene dysregulation
(24-25). By applying a bioinformatics approach, we
evaluated such effects of UTR-SNPs on TLRs
pathway genes and identified numerous disease-
associated variants that potentially confer the
disease risk through affecting transcription fastor
or miRNAs binding.TLR9 rs187084, a UTR-SNP
which probably interferes with transcription fagor
binding, has been shown to modify susceptibility to
diseases specially renal transplant recipients and
cancers (26-27). Several genes of TLRs pathway
are regulated post-transcriptionally by miRNAs
(28). Our analysis revealed that several SNPs of
TLRs network resided in microRNA target sites
(Table 3) that may potentially modify miRNA-
mediated regulation of these genes. For instance,
rs7744 in 3UTR of MYD88 and rs696 in 3UTR
of NFKBIA genes could disrupt the binding of miR-
520f-3p and miR-208a-3p, respectively. Matsunaga
et al. showed that homozygous minor allele of
rs7744 is associated with the severity of ulceeativ
colitis (29). Moreover, it has been shown that 6569
G>A is associated with the susceptibility to
different diseases including coronary artery diseas
and Behcet's disease (30-31).

In conclusion, the current study reports the
first pathway-based bioinformatics analysis of
SNPs in TLRs pathway genes and provides a
prioritized list of functional SNPs potentially
affecting regulation and function of the pathway.
However, we noticed that the complexities of
biological pathways merit the need for more
experimentation to validate the true effect of ¢hes
SNPs on TLRs network. Although the functional
significance of the candidate SNPs was not

Alipoor B et al.

experimentally assessed in this study, we believe
that our results will help researchers interested i
the roles of SNPs in TLRs pathways genes to focus
on proper candidate variants.
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