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Heart failure is one of the leading causes of deatildwide. End stage disease often requires heart

transplantation, which is hampered by donor orghortage. Tissue engineering represents a promising

alternative approach for cardiac repair. For theegation of artificial heart muscle tissue seveml types,

scaffold materials and bioreactor designs are uimd@stigation. In this review, the use of mesemsalystem

cells derived from human umbilical cord tissue (UE®) for cardiac tissue engineering will be discdsse
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In humans, the heart is one of the least
regenerative organs in the body (1). The limited
ability of the heart to regenerate damaged tissue
after major cardiac injuries often leads to heart
failure (2). Despite a wide range of therapeutic
approaches, heart failure remains the leading cause
of death in modern societies (3,4). Myocardial
infarction is the major cause of heart failure.
Ischemic conditions result in an irreversible lo$s
functional cardiomyocytes which are gradually
replaced by fibroblasts, forming non-contractile
scar tissue (5). Resident cardiac progenitor celfs

be found in transplanted human hearts, and
evidence of myocyte proliferation in the human
heart exists. However, this proliferation does not
compensate for up to 1 billion cardiomyocytes

being lost after MI (6). In end stage heart failure
allogeneic heart transplantation remains the last
treatment option, but it is limited due to donor
organ shortage. According to the Eurotransplant
International Foundation, in 2011 the demand for
donor hearts was covered only to 35 % in Germany
(7). The generation of artificial heart muscle uiss
using cardiac tissue engineering might be a
reasonable alternative to heart transplantation.
Cardiac tissue engineering
Cardiac  tissue engineering is an
interdisciplinary research area in regenerative
medicine. Besides paracrine effects supporting
angiogenesis, modulation of extracellular matrix
components, and stimulating interactions with
resident cardiac progenitor cells, the main aim of
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tissue engineering is the repopulation of the
diseased myocardium with cells that can restore
contractility (8-11).

Cell application

The route of administration of autologous
and allogeneic cells is one of the central question
in cardiac tissue engineering. Cellular cardio-
myoplasty is performed by intracoronary injection
or direct implantation of a single cell suspension
into the myocardium (12). Animal studies
demonstrate an increase in the pumping function of
the heart. However, myocardial regeneration was
not observed (13). Functional improvement could
be explained by secretion and stimulation of
angiogenic growth factors resulting in the lack of
myogenesis stimulation and contractility improv-
ement (14). Systemic application also carries the
risk of pulmonary accumulation of cells.
Experimental injection of cells into the
infarcted region ensures the delivery to the
damaged area but is hampered by significant cell
loss (12, 15).

An alternative approach to injection of
isolated cells into the heart is the use of artfig
engineered tissues that are geometrically,
structurally and functionally defined prior to
transplantation. Scaffolds are populatad vitro
with cells and subsequently implanted onto the
infarcted zone to allow precise cell delivery and
mechanical support (4, 16).

Resident cardiac stem cells can thus be
stimulated to migrate into the area of regeneration
induced by growth factors released from the
implanted cells. Reconstitution of heart muscle
tissue would also be possible by implanted cells
themselves, differentiatedn vivo into cardio-
myocytes by local tissue-specific mechanism or
differentiatedin vitro prior to transplantation. In
contrast to cell injection, using artificial hetigsue
might results in less cell loss due to cell
immobilization on scaffolds by adhesion
molecules (17).
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For myocardiac regeneration, cells from several cel
sources like skeletal muscle (18) or neonatal rat
heart (19) have been investigated already. Although
some of these cell types integrate into damaged
myocardium, application is restricted by limited
availability and poor proliferation capacity (20).
This has led to the search for alternative more
efficient cell populations.

Cell sources

Heart muscle regeneration requires cells
with the capability for proliferation, plasticitynd
functional integration into cardiac tissue (21ter8
cells feature unique regenerative potential and are
consequently qualified for this claim (22-24). Due
to their origin, stem cells are categorized into
embryonic, induced and adult stem cells (25).
Embryonic stem cells (ESC) derived from early
embryos are well expandable and able to
differentiate into various tissues. This pluripatgn
qualifies them for therapeutic applications, howeve
ethical and legal concerns about using embryos for
stem cell isolation exist. Moreover, in animal
studies teratocarcinomas are described after
implantation of ESC (26, 27). Induced pluripotent
stem cells (iPSC) are thought to be an alternative
cell source without ethical concerns (28). Sinae th
discovery of genetic reprogramming of adult
fibroblasts into pluripotent stem cells (29, 30)
extensive efforts aim at the clinical applicabildj
iPSC, including reprogramming of fibroblasts using
recombinant proteins (protein-induced pluripotent
stem cells (p-iPSC)) (31).

Potential cardiomyogenic differentiation of
p-iPSC also offers an option for cardiac tissue
engineering. Other sources include hematopoetic
stem cells and mesenchymal stem cells, either
obtained from newborn, children or adults. They are
collectively termed adult stem cells or postnatal
stem cells, particulary if they are derived from
infantile organisms (32). Mesenchymal stem cells
(MSC) have the capability for self-renewal and

differentiation  into  various lineages  of
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mesenchymal origin, nerve and myogenic cells.
Besides a comparable differentiation capacity, MSC
seem to be more efficacious in tissue reconstitutio
than adult hematopoetic stem cells, due to strong
pro-angiogenic properties necessary for a functiona
myocardium (33).

Moreover, MSC show a higher homing
potential towards tissue defects resulting in the
production of repairing growth factors (34, 35).
Since they have the ability to differentiate into
cardiomyocyte (36), MSC are a potential cellular
source for cardiac stem cell-based therapy (35, 37)
MSC have been already tested clinically and do not
raise any ethical concerns (38). To date, human
bone marrow (BM) represents the major source of
MSC. However, aspirating BM from the patient is
an invasive procedure and the number as well as the
differentiation potential and the maximum life span
of human BM-derived MSC (BMMSC) signi-
ficantly decline with donor age (39, 40).

The umbilical cord tissue may be an
attractive alternative source to BM (41). The two
arteries and the single vein of the umbilical cord
with a length up to 60 cm are surrounded with fetal
connective tissue — the so called Wharton's jelly,
protecting the vessels against compression, torsion
and bending (42). In line with several publications
Weiss et al. described MSC derived from the
perivascular and intervascular region of the
umbilical cord tissues (fig. 1), collectively terche
umbilical cord tissue derived mesenchymal stem
cells (UCMSC) (43-46).

In contrast to BMMSC, UCMSC are easily
attainable and can extensively be expanded and
maintained in culture, even after cryopreservation
(43, 47-49). With regard to future clinical triatajr
group successfully managed to grow UCMSC
under GMP-compliant culture conditions, while
retaining their phenotypic and functional propestie
(50). Due to close relation to the fetal phasds it
assumed that UCMSC are less determined than
adult stem cells, show less teratogenic potentidl a
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are free of viruses (43, 51). In addition, UCMSC
qualify for an allogeneic use due to their
immunological naivity (51) and weaker response to
inflammatory stimuli. With regard to their
multipotency (32, 41, 51-52) UCMSC can be
differentiated into bone, cartilage, neural and
muscle cells as well as cardiomyocyte-like celts, a
they express cardiac troponin-l aNecadherin (32,
41, 43, 51-53).

Perivascular region

: Vein
Intervascular region

Arteries

Fig 1. Umbilical cord profile. The two arteries and thege
vein of the umbilical cord are surrounded by Whaisojelly,

containing mesenchymal stem cells in the perivascahd
intervascular region.

Cardiomyogenic differentiation

Cardiomyogenic differentiation is presumed
to be triggered by an increased expression of the
embryonic transcription factor GATA-4 (54).
GATA-4 proteins are not only important for heart
development, but also constitute one of the earlies
cardiac markers (55). In adult hearts, GATA-4
regulates the expressions of several sarcomeric
proteins, which are used in combination with
proteins of the troponin complex for the verificati
of induced cardiomyocytes (56). In addition,
electric coupling by gap junctional connexins is
essential for contraction (57). Contraction of
cardiomyogenically differentiated stem cells of
embryonic and adult origin has already been
described, however with a percentage of contracting
cells less than 10 % (58-60).

Cardiomyogenic differentiation of BM-MSC
and a significant improvement of left ventricular
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function after application of BM-MSC have also
been published (61-63). However, the broad
differentiation potential of MSC could also lead to
undesirable effects. Since undifferentiated MSC
tend to spontaneously differentiate into multiple
lineages when transplanted in vivo, it is possible
that such uncommitted stem cells undergo
maldifferentiation within the infracted myocardium
with potentially life-threatening consequences, e.g
osteogenic differentiation of BM-MSC within
ischemic myocardium in a murine model (64).
Although such phenomenons are not yet described
for UCMSC (49) it was postulated that a certain
cardiac differentiation of stem cells prior to
transplantation would result in enhanced
myocardial regeneration and recovery of heart
function (65).

In this context, initiating the transformation
of stem cells into a cardiomyogenic lineage is
accomplished by defined culture conditions (66).
Embryo-like  aggregates (67), the DNA
demethylating agent 5-azacytidine (53, 68-69),
several growth factors and the oxytocic hormone
(70) are used to induce myocyte differentiation of
various stem cell types. Maltsevval. demonstrated
the expression of cardio-specific genes, proteins
and action potentials in cells differentiated from
murine embryonal stem cells by cultivation in
hanging drops as “embryoid bodies” (67). Using
this  differentiation system, UCMSC form
aggregates, but cellular outspread is not sufftcien
for performing extensive analyses. Failure of
cellular outgrowth may be explainable due to the
dependence of this method on the initial cell
number present in the aggregates (71).

Based on a yet unknown mechanism,
cytostatic  5-azacytidine results in  cardiac
differentiation of stem cells by DNA-demethylation
(72). Cardiac differentiation of MSC induced by 5-
azacytidine is controversially discussed. Martin-
Rendon and colleagues report that 5-azacytidin
treated human MSC derived from umbilical cord
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and bone marrow do not generate cardiomyocytes
in vitro at high frequencies (23).

In contrast, results of Antonitsiet al. and
Pereira et al. indicate that adult human bone
marrow MSC (73) and MSC from umbilical cord
(35) can differentiate towards a cardiomyogenic
lineage after 5-azacytidine treatment. These
discrepancies might be explained by the variability
in culture conditions (74) or by different
specification criteria for what makes a cell a
cardiomyocyte. For example, the use of cytokines
and growth factors is a step forward in the
development of a defined culture milieu for
directing the cardiomyogenic differentiation. Insth
context, TGFp and bFGF are the most important
growth factors in embryonic cardiac development
affecting cell proliferation, migration and
differentiation (75). Xuet al. stated that bFGF is
necessary during the differentiation process becxaus
of its capability to develop the myogenic phenotype
and promote the formation of myotubes (76).

However, our study showed that UCMSC
exposed to b5-azacytidine convert into cells
changing their morphology and expressing cardiac-
specific proteins irrespective of the presence of
bFGF (71).

UCMSC differentiated according to Wt
al. (69), using 5 pM 5-azacytidine for 24 h and
bFGF containing culture medium, increase in size
with striate pattern and express cardiac actin,
cardiac actinin, sarcomeric actin, sarcomeric
actinin, myosin heavy chain as well as connexin 43
after 5 weeks of culture. UCMSC treated with 3 uM
5-azacytidine for 24 h according to Waetaal. (53)
and 10 pM 5-azacytidine for 72 h according to
Matsuura protocol | (70) also change their
morphology and express these cardiac specific
proteins known for regulating contraction and gap-
junctional communication without supplemented
bFGF. TGFB1 in combination with 5-azacytidine
have been found to promote differentiation of
human cardiomyocyte progenitor cells (68).
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However, in our hands, the combination of
5-azacytidine and TGB1 stimulation of UCMSC

leads to a flattened appearance and the expression

of cardiac actin, cardiac actinin, sarcomeric actin
sarcomeric actinin as well as connexin 43 after 5
weeks of culture, but UCMSC do not express any
troponins or myosins necessary for contraction. In
addition, during the differentiation process, cell
numbers decreased to levels insufficient for
immunocytochemical analyses (71).

Cardiac differentiation of embryonic P19
carcinoma cells and adult Sca-1+ cells of murine
heart is also described after exposure to oxytocin,
the mechanism of action, however, is unknown (70-
77). Oxytocin, a female reproductive hormone, is
necessary for uterine contractions during ovulation
and parturition. The expression levels of oxytocin
are higher in developing hearts than in adult lseart
suggesting that oxytocin may be involved in
cardiomyocyte differentiation (78). Data from
Matsuuraet al. indicate that oxytocin is a more
potent inducer of cardiac differentiation of Sca-1+
adult murine heart cells than 5-azacytidine (70).
This is supported by our results figure 2,
demonstrating that human UCMSC exposed to

10nM oxytocin for 72 h express the cardiomyocyte-
associated proteins including cardiac actin (fig), 2
sarcomeric actin (fig. 2b), cardiac troponin T (fig
2d), connexin 43 (fig. 2e) cardiac actinin (fig),2f
sarcomeric actinin (fig. 2g), and myosin heavy
chain (fig. 2h) in significantly higher frequencies
than after 5-azacytidine treatment (71). This
analysis revealed that UCMSC can be differentiated
into cardiomyocyte-like cells, however, functional
analyses of oxytocin-differentiated UCMSC, such
as to monitor action potentials, have yet to be
performed.
Scaffolds

It is known that isolated cells are generally
not able to form new tissue autonomously (79). For
generating tissum vitro, cells have to be colonized
onto natural or artificial scaffolds. However,
development of functional tissue requires an
optimal interaction of cells and scaffolds. A
scaffold should provide chemical stability and
physical properties matching the surrounding tissue
to provide cytocompatibility, support adhesion,
proliferation, and mechanical strength (80).
Additionally, scaffolds are required to retain cell
phenotype and ensure protein synthesis (81).

Fig 2. Immunocytochemical analysis of UCMSC differentiatemtording to Matsuura et al. using oxytocin (Xardiac differentiate)
UCMSC express the contractile proteins cardiama@t), sarcomeric actin (b), cardiac troponin T, (@rdiac actinin (d), sarcome
actinin (e), myosin heavy chain (f) as well asghe junctional protein connexin 43 (g) (a-g; albmeen fluorescence) for electrical ¢
to-cell coupling. Cell nuclei were stained by DARIg; blue) (71). Scale bars: a-f =50 um, g = 86 p
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In order to avoid implant rejection and
inflammatory response, scaffolds should be
biocompatible and sterilizable. For generating
functional heart muscle, scaffolds should be made
of flexible and tear-resistant material to allow
contraction (80, 82). Regardless of which
biocompatible material scaffolds are made of, the
microarchitecture

including  porosity, pore

geometry and the surface  micro-texture
considerably influence cell function (83). Both,
scaffolds of biological origin and those made of
synthetic material as well as some type of hybrids
are currently under investigation for tissue

engineering applications (84-86).

Biomaterials
Decellularised tissues

These tissues of allogeneic or xenogeneic
origin are derived from enzymatic or detergent
decellularisation (87). Cell-free tissues consiét o
natural extracellular matrix (ECM), degrade after
implantation and are replaced by ECM-proteins of
transplanted cells after re-seeding or by in-grawin
cells (88). Due to excellent mechanical properties,
decellularised tissues are used for the development
of viable heart valve prostheses (89). However,
decellularisation can damage scaffold tissue,
resulting in a decreased tensile strength and
elasticity. Xenogenic decelluarised tissues undergo
aneurysms and lead to infections and thrombosis. In
addition, decellularisation might affect seeding
efficiency due to residual antigenic components
inducing humoral responses (87, 90, 91).
Biopolymers

Natural polymers include fibrin, collagen,
chitin, hyaluronic acid, and alginates. Besides
enzymatic degradation, biopolymers show low
inflammatory activity and toxicity (81). In additip
they support cell growth on implants due to their
high protein content and accelerate healing because
of strong adhesion to recipient organs (58). Fikzin
part of the blood clotting system and plays a @ntr
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role in wound healing. As an alternative to
conventional surgical sutures, fibrin glue is
clinically used for wound closure (90). Collagen is
another example of biopolymers in clinical practice
It is the predominant protein in the human body and
the main component of ECM (81, 90). In
cardiovascular surgery, collagen is used for heart
valve replacement and blood vessel substitutes as
well as for bone repair and burn and ulcer treatmen
(82). Naturally occurring biomaterials may most
closely simulate the native cellular milieu, butgla
batch-to-batch variations upon isolation from
biological tissues and poor mechanical strength are
the main limitations for a clinical application. In
addition, biopolymers are often denatured in a way
no longer enabling tissue formation and often
require chemical modifications, which can lead to
toxicity (79, 81).

Synthetic materials
Degradable Polymers

Numerous synthetic and degradable
polymers like poly§-hydroxy ester), particulary
polyglycolic acid (PGA) or polylactid acid (PLA),
polyanhydrides, polyorthoester and
polyphosphazanes have been developed to
overcome the limitations of natural materials
mentioned above (79). Synthetic degradable
polymers undergo degradation during cell culture or
after implantation upon formation of tissue specifi
neo-ECM. Most of these polymers are resistant to
enzymatic digestion, they are rather chemically
hydrolyzed resulting in consistent and patient-
independent degradation (79, 90).

In order to allow tissue generation and
remodeling processes, microstructure, mechanical
properties and resorption rate can be regulated by
porosity and pore size, for example. After cell
seeding, synthetic degradable polymers initially
retain the cellular compound and ensure mechanical
function of implants until an ECM is formed by
colonized cells (90). However, if polymers degrade
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faster than the development of an ECM occurs,
seeded cells lose their connectivity resultingifalf

cell loss and an inhibition of therapeutic effedts.
addition, polyesters release degradation products
which affect biocompatibility. Moreover, polyesters
are stiff materials suitable for load-bearing
implants, but the minimal flexibility precludes the
use for soft tissues like heart muscle.
Non-degradable polymers

Synthetic, non-degradable polymeres are
characterized by structural resistance, a special
topography and a three-dimensional form with
defined pore sizes. Polyethylen terepthalate (PET,
Dacron®), polyurethane (PU), and expanded
polytetrafluorethylene (ePTFE) dominate the graft
market (92) because of their anti-thrombotic
properties. PET is a semi-crystalline aromatic
polyester built of woven or knitted multiple fibres
While woven PET grafts feature small pores,
knitted implants exhibit larger pores supporting
tissue ingrowth. PET is mainly used for artificial
blood vessels, tendon substitutes and surgical
sutures (82, 86).

PU is a polymer with a characteristic
urethane group. Within the monomeric unit,
moieties could be substituted by different groups,
resulting in versatile properties. Fabrication of
hydrolytic stable PU led to the development of
different implants like vascular grafts, artificial
heart valves and catheters (82, 86). PTFE is an
unbranched linear polymere built of fluorine and
carbon. Expanded PTFE (ePTFE) features nodes in
fibrillar structure with longitudinal internodal
distances of 17-90 um. Due to the symmetrical
design of the monomeric unit, crystallinity of
ePTFE come up to 94 % preventing degradation.
Besides easy availability, ePTFE offer non-
immunogenic and anti-thrombotic properties (86).

ePTFE is clinically used for cardiac, groin
and vascular grafts. However, the use of synthetic
non-degradable polymers as scaffolds for tissue
engineering is often limited by the poor retentadn
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cells to these hydrophobic biomaterials (82, 93-95,
96). Yu et al. report, that endothelial cells — in
contrast to smooth muscle cells - adhere poorly to
ePTFE. In our experiments, the investigation of
adherence, viability, proliferation and morphology
of UCMSC on uncoated ePTFE scaffolds showed
poor results (97). This is in line with results rfro
Neuss et al. (80), demonstrating that bone-marrow
derived MSC (BMMSC) display a round, spherical
morphology on ePTFE. Furthermore, ePTFE does
not allow BMMSC proliferation, indicating that
cells need an underlying matrix providing them
with sufficient binding sites.

Hybrids

Hybrids combine advantages of different
materials in one composite. Surface modification of
non-degradable polymers increases the wettability
leading to an improved seeding efficiency. The
knowledge that positively charged surfaces are
more conductive to cell adhesion and
morphological maturation, led to the examination of
various adhesive coatings of synthetic materials
(98). The matrix molecules of these coating
substances, such as albumin, collagen, fibrin,
gelatine, fibronectin, laminin and fibrin glue, Hin
directly to specific domains on the cell membrane
(95, 99). For example, Kaehler et al. and Feudier e
al. pre coated ePTFE vascular prostheses with
fibronectin-treated Type I/lll collagen and repalte
a higher cell adherence and spreading on these
grafts (100, 101). Although coating with specific
proteins improves cell adhesion, the integrityhad t
coating is compromised by mechanical stress (94).
Furthermore, if surfaces are not completely
endothelialized or endothelial cells are lost upon
exposure to mechanical loadings, these coatings
attract platelets. In these cases, the technicagsle
to a more thrombogenic surface, which defeats the
purpose of cell seeding (102).

To overcome the limitation of biological
coatings, a hydrophilic titanium-coated surface can
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be obtained by plasma-assisted chemical vapour
deposition (PACVD): The resulting covalent
bonding can only be separated by destroying the
synthetic structure itself. The titanium layer is
extremely thin and has the same flexibility as the
synthetic material. Titanium-coated synthetics
feature outstanding wettability enabling them to
adapt to the anatomical environment and to enhance
cell adhesion (92). Moreover, titanium-coated
synthetic implants provide excellent
biocompatibility because of the oxide layer which
forms under atmospheric conditions. Therefore
titanium and its alloys are widely used as
biomaterials in association with tissue, bone, and
blood (103-105). Our findings, that titanium-coated
ePTFE figure 3a, scaffolds are superior to uncoated
ePTFE scaffolds figure 3b, in UCMSC adherence,
viability and proliferation (97) are in line with
results of previous studies, demonstrating a suppor
of MSC adhesion and proliferation on titanium

dishes (104, 106).

Bioreactors

For the use of tissue engineered construrcts
vivo, it is essential to examine their functionality
and mechanical integrity prior to implantation
(107). In addition, forces acting directly or
indirectly on cells, e.g. via scaffolds, can affect
cellular differentiation (82).In vivo, cells are
stimulated continuously by mechanical, electrical
and chemical signals influencing their phenotype,
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morphology and proliferationlf these signals are
inappropriate or absent, cells lose their ability t
form organized tissues (108). Thus, bioreactors
simulating physiological conditions, such as
mechanical shear stress, play a crucial role in the
development of tissue engineered constructs (107).

The development of an effective bioreactor
requires the consideration of various parameters.
Ideally, bioreactors allow the regulation of phydic
parameters such as temperature, pH;, g&CQ,
allow nutrient supply and removal of toxic
metabolites as well as mechanical stimuli.
Moreover, the material must be compatible with the
manufacturing process, sterilization technique and
the cultured cell type (109). Bioreactors can be
applied for cell seeding, cultivation of colonized
scaffolds and for conditioning of functional tissue
engineered prostheses (110-112).

In heart valve fabrication, bioreactors for
tissue formation under dynamic culture conditions
were demonstrated several times (107, 113, 114).
Bioreactors also support tissue formation of heart
musclein vitro (115, 116). An effective approach to
improve the contractile properties of artificialane
muscle constructs is electrical field stimulation o
mechanical stimulation by unidirectional or
auxotonic stretching (117). Accompanied by an
improvement of contractile function, some studies
demonstrated extracellular matrix formation,
increased cell proliferation and uniform cell
distribution of strained constructs (118,119).

Fig 3. Morphology of UCMSC seeded on uncoated and titardoated ePTFE. UCMSC display their characterisfi;mdie-shape|
morphology in a homogenous coverage on titaniuntecb@aPTFE (a, arrow) in contrast to a sphericalpmology seeded on uncoa
ePTFE (b, arrow) (97). Scale bars: a = 10 um, @ grh.
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In this context, Zimmermann et al. reported
from highly differentiated cardiac tissue constsuct
after cyclic mechanostimulation in a stretch device
(58). Sodian et al. developed a closed-looped
perfused bioreactor by combining pulsatile
perfusion and periodically stretching of tissue-
engineered patch constructs (120). Birla et al.
described a bioreactor system that applies
electromechanical stretch to bioengineered heart
muscle constructs with no evidence of physical
damage (121). In order to repopulate ischemic
myocardium with cells that might restore
contractility, we analyzed the stability of the
cellular coating upon mechanical stress in a newly
developed bioreactor figure 4, mimicking
myocardial contraction (122).

Three fluid compartments enable the
comparison of different media, cells and scaffolds
at defined mechanical loadings. Manufacturing of
the core unit from acrylic glass provides optical
transparency for macroscopical observation of
processes within the unit. Elements of acrylic glas
stainless steel, Teflon® and silicone are robust an
can be gas sterilized. Fixing of seeded scaffolds b
clip-systems allows an easy assembling, reliable
fixing and facilitates sterile handling. The speed
controlled gear motor provides frequencies at 1-65

Hz, offering gradually increasing mechanical
loadings of the tissue-engineered scaffolds. In
addition, the bioreactor was designed in a
dimension that allows its operation in a standard
incubator. Preliminary experiments with UCMSC-
seeded ePTFE scaffolds show the mechanical
integrity of the cellular coating after frictionress
generated in the pulsatile bioreactor. Viabilitydan
ultrastructural morphology of the stem cells asoal
maintained upon mechanical stress (122).

Conclusion

Cardiac tissue engineering using UCMSC
represents a promising approach for the repair of
the injured heart, however, clinical relevance of
tissue engineered constructs have to be evaliated
vivo. Functional regeneration of heart tissue after
cardiomyodegenerative  diseases should be
demonstrated by the integration of UCMSC-seeded
implants and/or their interaction with resident
cardiac stem cells. In addition, survival of
implanted constructs, tissue-specific differentiati
and vascularization have to be verified. Moreover,
electric  integration resulting in functional
reconstitution of the injured muscle tissue is § ke
step in the evaluation of safety and efficiency of
UCMSC-seeded implants.

Fig 4. Pulsatile bioreactor. Comparison of different mediells and scaffolds are enabled by three medmapacments at defing
mechanical loadings. Core unit manufacturing fraryléic glass provides optical transparency for racopical observation of proces
within the unit (122). Scale bar = 20 mm.
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