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Mini-review Article Ebola virus (EBOV) is a life-threatening and virulent pathogen that kills approximately 90
percent of infected individuals. Nowadays, microRNAs (miRNAs) have become a promising
option for more efficient screening, diagnosis, monitoring, and therapy of numerous diseases
such as cancer, stroke, Alzheimer's, and viral infections. Recent studies have revealed the
role of EBOV and host-encoded miRNAs in Ebola virus disease (EVD), opening an avenue
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Introduction

In recent years, microRNAs (miRNAs) have attracted the attention of many researchers. They are a
broad family of small, non-coding single-stranded RNAs with a length of 17-24 nucleotides that constitute
a principal part of the RNA interference (RNAI) system (Figure 1) (1). Generally, about 60 percent of human
gene regulation is attributed to miRNAs (2). Each miRNA regulates hundreds of targets (3). miRNAs play
important roles in physiological processes and their deregulation was reported in many pathological
conditions, such as carcinogenesis, anoikis resistance, metastasis, and viral infections (2, 4-7). Cellular
miRNAs play a crucial role in the life cycle of several viruses (8) such as human papillomavirus (HPV) (9-
11), human cytomegalovirus (HCMV) (12-14), Epstein-Barr virus (EBV), hepatitis B virus (HBV) (15),
hepatitis C virus (HCV) (16), influenza A virus (FluA) (17), human T-cell leukemia virus type 1 (HTLV-1)
(18, 19), human immunodeficiency virus (HIV) (20). In addition, it has been established that some viruses
encode their own v-miRNAs and others use cellular miRNAs (21, 22). In EBV, BamHI-A antisense
transcripts (BARTS) encode for a large number of v-miRNAs. Some of them target the 3'UTR of EBV latent
membrane protein 1 (LMP-1), and it has been indicated that LMP-1 has a key role in the induction of
nasopharyngeal carcinoma (NPC) (23). Moreover, miR-H1 in HIV-1 targets transcript of apoptosis
antagonizing transcription factor (AATF) that downregulates c-myc, B-cell lymphoma 2 (Bcl-2), and Dicer
expression. This miRNA also reduces the expression of cellular miR-149 that targets HIV-1 Vpr protein.
Taken together, miR-H1 disrupts cellular responses to HIV-1 infection (24).
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Fig. 1. miRNA biogenesis. RNA polymerase Il produces a primary miRNA, or pri-miRNA. In the next step, pri-miRNA is matured
by the DGCR8-Drosha complex, which is converted to pre-miRNA. The pre-miRNA is transported to the cytoplasm by Ran-
GTP/exportin 5. In the cytosol, pre-miRNA is cleaved and converted into a miRNA duplex by Dicer. After the miRNA-miRNA

duplex unwinds, one strand (mature miRNA) is loaded into RISC, and the complementary strand is removed. The mature miRNA
guided the RISC to target mMRNA. The mature miRNA binds to target mMRNA, leading to mRNA degradation.
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Cellular miRNA regulates antiviral response-related signaling pathways. hsa-miR-192 and hsa-miR-
215 target the frizzled receptors, while hsa-miR-181a directly binds to -catenin (CTNNBL1) in Wnt- -
catenin pathway during Rotavirus infection (RV) but their expression downregulated during RV infection
leading to activated Wnt/B-catenin signaling and survival of infected cells. On the other hand, combined
overexpression of miR-192 and miR-215 in RV-infected cells inhibited Rotavirus replication. miR-34
family also downregulate the Wnt pathway repressing flavivirus replication and enhance the interferon
response in infected cells(25).

The p38 MAPK pathway is activated during IAV infection and its suppression inhibited of 1AV and
Respiratory Syncytial Virus (RSV) viral replication. miR-124a, miR-744, and miR-24 show extensive
antiviral effects against IAV and RSV such as downregulation of MK2 and p38 MAPK reduced activation.
During coxsackievirus (CVB3) infection of HeLa cells, miR-21 upregulation, downregulated MAP2K3 and
suppressed p38 MAPK signaling pathway leading to viral progeny release inhibition and reduced cellular
apoptosis(25, 26).

Among the viral infections, miRNAs possess potential important functions in Ebola virus (EBOV)
infection. EBOV s a linear, non-segmented, negative-stranded and enveloped RNA virus that belongs to
the filoviridae family (27). The viral proteins include glycoprotein 1,2 (GP1,2), nucleoprotein (NP), VP35
(polymerase cofactor), VP40 (matrix protein), VP30 (transcriptional activator), VP24 (RNA complex-
associated protein), and L (large protein) (28). To date, based on the International Committee on Taxonomy
of Viruses (ICTV), six species in the genus of ebolavirus have been identified, including Bombali EBOV,
Bundibugyo EBOV, Reston EBOV, Sudan EBOV, Tai Forest (formerly: Cote d’Ivoire) EBOV, and Zaire
EBOV (29). EBOV infection drives cytokine storm (high-level production of pro-inflammatory cytokines),
disseminated intravascular coagulation (DIC), disabling of lymphocyte immune response, and host T cell
apoptosis that consequently leads to Ebola virus disease (EVD) or Ebola hemorrhagic fever (EHF). Clinical
manifestations include fever, chills, headache, sore throat, muscle aches, vomiting, diarrhea, maculopapular
rash, impaired kidney/liver function, and internal/external bleeding (30). The largest-ever epidemic of EVD
has been ongoing in West Africa since 2016, with more than 11,000 deaths (31).

Literature Searching

In this paper, we systematically searched scientific repositories, including Medline/PubMed and Web
of Science, to identify relevant studies. We used a combination of keywords including ("Ebolavirus") OR
("Ebola virus") OR ("EBOLA") AND ("microRNA") OR ("miR") OR ("miRNA"). A total of 10 articles
were included in this review. We have summarized the current resources highlighting the importance of
both cellular and v-miRNAs in EBOV infection and disease.
mMiRNA and Ebola virus infection

RNA viruses replicate in the cytoplasm of the host cell. Theoretically, because of their lack of access
to the nucleus, these viruses cannot encode v-miRNA. However, there are several reports indicating that
West Nile Virus (WNV) (32), Dengue virus (DENV) (33), and Influenza A virus produce v-miRNAs (34-
36). Liang HW et al. decided to answer the question: Can EBOV encode functional miRNAs or miRNA-
like small RNAs? In 2014, this group used computational prediction followed by experimental validation
methods and demonstrated that the EBOV genome produces two putative v-miRNA precursors (EBOV-pre-
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miR-1 and EBOV-pre-miR-2) and three putative mature microRNAs. They validated this feature in human
embryonic kidney 293T (HEK293T) cells transfected with a pcDNAG6.2-GW/EmGFP-EBOV-pre-miRNA
plasmid and concluded that EBOV-miRNAs are generated by the cellular-miRNA processing complex.
Surprisingly, they showed that Sudan and Zaire EBOVs encode these miRNAs but not Reston EBOV (37),
consistent with the high mortality rate of Sudan EBOV and Zaire EBOV and the low mortality rate of Reston
EBOV (38). Cellular target prediction analysis elucidated that the expression of host genes involved in virus
immune escape and apoptosis can be regulated via EBOV-miRNAs. Also, EBOV-miRNAs can be utilized
as a biomarker for the diagnosis and prognosis of EBOV infection and as a novel molecular target for EVD
therapy (37). EBOV glycoprotein (GP) is a player in the inflammation, cell cytotoxicity, immune system
impairment, detachment of endothelial cells (Anoikis), and increased vascular permeability seen in EVD
(39-41). Another work, using next-generation sequencing (NGS) and differentially expressed miRNAs
(DEmiRs) analysis, opened more detailed insight into EBOV pathogenesis. It showed that EBOV GP
upregulates host cell miRNAs: hsa-miR-1246, hsa-miR-196b-5p, and hsa-miR320a in human umbilical vein
endothelial cells (HUVECs), and subsequently downregulates their target genes (associated with cell
adhesion): tissue factor pathway inhibitor (TFPI), caspase 8 and FADD-like apoptosis regulator (CFLAR),
and dystroglycanl (DAG1) at the protein level. Eventually, these events lead to increased vascular
permeability, loss of endothelial cell integrity, and EHF. This research also introduced inhibitors of hsa-
miR-320a, hsa-miR-1246, and hsa-miR-196b-5p as novel potential EBOV infection therapeutics that
effectively reduced EBOV cell cytotoxicity (42). A group of researchers used a systematic genome-wide
screening (an approach that is different from the Liang HW method) to find the potential miRNAs in the
EBOV during the 2014 EBOV outbreak. They predicted and experimentally confirmed seven mature
EBOV-miRNAs (including EBOV-miR-T1-5p, EBOV-miR-T1-3p, EBOV-miR-T2-5p, EBOV-miR-T2-
3p, EBOV-miR-T3-3p, and EBOV-miR-T4-3p) and their target genes. The target genes that are
downregulated by these v-miRNAs include nuclear factor kappa B (NF-KB) and tumor necrosis factor
(TNF) involved in virus-cell crosstalk, viral replication, immune evading, and apoptosis (43). A
computationally-based analysis of human miRNAs found ten human miRNAs (hsa-miR-5699-5p, hsa-miR-
4682, hsa-miR-4692, hsa-miR-548az, hsa-miR-145-3p, hsa-miR-4526, hsa-miR-548s, hsa-miR-491-3p,
hsa-miR-3065-5p, and hsa-miR-4633-3p) that can potentially block EBOV infection via degradation of viral
transcripts (44). Northern blotting analysis of the sera of EVD patients revealed the presence of a miRNA-
like RNA fragment corresponding to miR-VP-3p in the serum specimens of EVD patients but not in healthy
individuals. They further utilized reverse transcription-polymerase chain reaction (RT-PCR), TA-cloning,
and sequencing techniques to validate the presence of this mMiRNA-like RNA fragment. Then, the presence
of EBOV-miR-VP-3p was confirmed. The result of miR-VP-3p measurement in the sera of EBOV RNA
RT-PCR-negative EVD patients detected a high level of miR-VP-3p, suggesting that miR-VP-3p could be
detected before the EBOV RNA became positive. Thus, miR-VP-3p can be utilized as a useful biomarker
for the fast diagnosis of EBOV cases, which fills the gap in the field of EBOV diagnostics and helps the
control of future EBOV outbreaks (45). Importin-a5 plays a role in the nuclear accumulation of signal
transducer, activator of transcription-1 (STAT-1), and interferon (IFN) signaling. The importance of IFN in
viral infection, evasion, and pathogenesis is indispensable (46-49). Yuanwu Liu et al. identified a v-miRNA
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named Zebov-miR-1-5p (similar to hsa-miR-155-5p) that is encoded at the 5'-UTR of the VP24 EBOV gene
and downregulates importin-o5 (KPNA1) expression, which may impair IFN signaling and induce viral
pathogenesis (50). Current EBOV diagnostic methods are usually limited to viral detection and cannot
identify asymptomatic or presymptomatic cases; therefore, alteration of all host RNA transcripts
(transcriptome) induced by EBOV infection can be a good surrogate option. A retrospective investigation
of the expression of 752 circulating miRNAs in longitudinally collected plasma specimens from rhesus
macaques challenged EBOV via intramuscular (IM) injection and aerosol inhalation, as well as plasma
samples of EBOV-infected patients (during the 2014 outbreak in Western Africa), discovered 36 miRNAs
differentially expressed in human and non-human primate (NHP) groups. Fifteen of them were markedly
correlated to the EBOV viral load in both non-human primates and human samples. Also, a miRNA panel
was developed by using 8 selected miRNAs (including hsa-miR-146a-5p, hsa-miR-18b-5p, hsa-miR-21-3p,
hsa-miR-22-3p, hsa-miR-29a-3p, hsa-miR-432-5p, hsa-miR-511-5p, and hsa-miR-596) that correctly
classified infection status in 64/74 (86%) human and non-human primate samples. This classifier detected
acute infections in 27/29 (93.1%) samples and 6/12 (50%) presymptomatic non-human primates (51). In
2018, the minigenome system, tetracistronic transcription, and replication-competent virus-like particle
(trVLP) system, along with RT-PCR, western blot, and double fluorescence reporter assays, were used for
screening of anti-EBOV host miRNAs. The results exhibited that miR-150-3p, miR-103b, and miR-15a-3p
had the best inhibitory effect against EBOV infection. Among them, miR-150-3p blocked the reproduction
of trVLPs by directly targeting the coding sequences of GP and VP40 and regulating the expression of GP
and VP40 (52). Analysis of mouse, rhesus macaque, cynomolgus macaque, and humans infected cells with
EBOV using the RT-PCR method revealed that miR-1-5p, miR-1-3p, and miR-T3-3p had the highest
expression level, which may pose an important function in EBOV pathogenesis and can be exploited as a
useful diagnostic marker (53). The eye is one of the immune-privileged body sites (which have suppressed
and/or completely blocked immune responses to foreign antigens) (54). It was previously shown that eye
retinal pigment epithelial cells are a potential reservoir for EBOV in the human eye. Persistent EBOV in the
eye can lead to uveitis (an inflammatory condition that leads to swelling and destruction of eye tissue),
which is considered a sequela in EVD survivors. Uveitis occurs in approximately a quarter of EVD
survivors. RNA sequencing of the human retinal pigment epithelial cell line (ARPE-19) infected with EBOV
revealed 13 miRNAs that were markedly upregulated (such as hsa-miR-29b-3p, hsa-miR-33a-5p, and hsa-
miR-1307-5p) and 2 miRNAs that were markedly downregulated (hsa-miR-27b-5p, and hsa-miR-3074-3p).
Also, EBOV-miR-1-5p was detected in this EBOV-infected cell line. The targets of these miRNAs function
in the innate and adaptive immune system, cell apoptosis, autophagy, and neuroinflammation (55).
Quantitative PCR (qPCR), small RNA sequencing (SRNA-Seq), and functional assessment were conducted
on the human liver cell line (Huh7) infected with EBOV to identify the comparative miRNA transcriptome
(miRNome). The obtained results elucidated the miRNA-based immunity pathways and provided new
insights into the molecular signature of human liver cells following EBOV infection, which can be used as
a biomarker for fast and timely diagnosis (56). A study has been carried out on host-miRNA responses in
the Cynomolgus macaque model using blood samples that were longitudinally collected during the EVD
course to find biomarkers. Identified miRNA biomarkers were related to dysregulated host immune
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responses in EVD. In particular, hsa-miR-122-5p and hsa-miR-125b-5p interact with immunological genes
that regulate both B-cell and T-cell activation. These miRNAs are potentially valuable as novel diagnostic
and prognostic markers of EVD (57). Figure 2 collects current knowledge about important alterations in
host cell miRNAs in various contexts (HUVECs, ARPE-19, Huh7, and NHPs. An investigation into v-
miRNA production by EBOV during infection of human and bat cell lines via NGS revealed several non-
coding RNAs (ncRNAs) from EBOV that were produced independently of the host cell-miRNA machinery.
But confirmatory (immunological and molecular) analysis demonstrated that these ncRNAs were not
associated with RISC and therefore did not function as miRNAs (58).
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Fig. 2. Altered host-encoded miRNAs upon EBOV infection in different contexts. Following EBOV infection, certain cellular
miRNAs are induced or repressed, leading to the regulation of multiple processes such as immune responses, cell cycle, apoptosis,

etc. Indeed, these alterations in host miRNAs and the resulting cellular events constitute a pivotal part of EBOV pathogenesis.

HUVECS: human umbilical vein endothelial cells, ARPE-19: human retinal pigment epithelial cell line, Huh7: human liver cell line,

NHPs: non-human primates.

Most recently, an investigation has been conducted on the transcriptome of EBOV-infected cultured
human liver cells, and a bioinformatic analysis showed that EBOV encoded two miRNAs (miR-MAY-251
and miR-MAK-403). At the verification step, the researchers indicated that miR-MAY-251 and miR-MAK-
403 can potentially target several genes that play a role in viral replication, regulation of host cell immune
response, and hemorrhagic symptoms in infected patients (59).

EBOV-miRNAs offer new opportunities for developing novel therapeutic strategies for EVD and
biomarkers for early and accurate diagnosis of EVD, as well as for monitoring disease progression and
response to treatment. They can also be targeted by antagomirs or mimics to modulate their expression and
function, thereby altering the viral-host interaction and disease outcome. Furthermore, EBOV-miRNAS can
be considered tools for studying the molecular mechanisms and pathogenesis of EVD, as well as for
identifying new host factors and pathways involved in EBOV infection. The potential usability of EBOV-
encoded miRNAs, including miR-VP-3p, miR-1-3p, miR-T3-3p, and miR-1-5p, as biomarkers for a better
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diagnosis and prognosis of EBOV-infected individuals (Figure 3). On the other hand, it has also been shown
that EBOV-miR-1-5p, miR-T1-5p, miR-T2-3p, as well as anti-EBOV host cell miRNAs such as has-miR-
150-3p, has-miR-103b, has-miR-15a-3p, has-miR-4692, has-miR-548-az, and has-miR-145-3p can be used
as novel targets for more effective treatment of EVD patients. In conclusion, EBOV-miRNAs and host
cellular miRNAs involved in EBOV infection might be important regulators of viral-host interaction and
disease pathogenesis, and they provide new insights and avenues for EVD diagnosis and treatment.
Although valuable studies have been done in fields of cellular and EBOV-miRNAs, further studies are
needed to elucidate the details of related molecular mechanisms.
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Fig. 3. EBOV-encoded miRNAs, role and their potential usability in the diagnostics and therapeutics of EVD. NF-KB: nuclear
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