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Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) infecting mechanism 

depends on hosting angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 

2 (TMPRSS2) as essential components and androgens as regulators for inducing the expression 

of these components. Therefore, hyperandrogenism-related disease such as polycystic ovary 

syndrome (PCOS) in insulin resistant women in reproductive-age is a high-risk factor for SARS-

CoV-2 infection. Here, we describe the signaling pathways that might increase the susceptibility 

and severity of this new pandemic in PCOS women with insulin resistance (IR). Luteinizing 

hormone and insulin increase the risk of SARS-CoV-2 infection in these patients via the induction 

of steroidogenic enzymes expression through cAMP-response element binding protein and 

Forkhead box protein O1 (FOXO1), respectively. TMPRSS2 expression is activated through 

phosphorylation of FOXO1 in ovaries. In other words, SARS-CoV-2 infection is associated with 

temporary IR by affecting ACE2 and disturbing β-pancreatic function. Therefore, PCOS, IR, and 

SARS-CoV-2 infection are three corners of the triangle that have complicated relations, and their 

association might increase the risk of SARS-CoV-2 infection and severity. 
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Introduction 

A novel coronavirus emerged in Wuhan, Hubei province, China, in December 2019 and caused an 

ongoing pandemic of severe acute respiratory syndrome (1–3). Severe Acute Respiratory Syndrome Corona 

Virus 2 (SARS-CoV-2) is an enveloped virus with a positive-strand RNA from the β-coronaviruses genus 

and Coronaviridae family (4,5). After SARS-CoV, MERS-CoV, HKU1, NL63, OC43, and 229, the new 

coronavirus is the seventh known member of this family, infecting humans (4). This respiratory virus has a 

spike (S) glycoprotein with a receptor-binding domain (RBD), which is adjusted for high affinity binding 
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to the human receptor angiotensin-converting enzyme 2 (ACE2) (2,6). Host transmembrane protease serine 

2 (TMPRSS2) facilitates the entrance of SARS-CoV-2 and other coronaviruses (1,6,7). Androgens, the 

category of hormones produced in adrenal glands and gonads (testes and ovaries), drive the incidence of 

SARS-CoV-2 by regulating ACE2 receptor and TMPRSS2 expression (8–10). These steroid hormones are 

physiological and developmental regulators in both sexes. Testosterone is the primary androgen to manifest 

and preserve masculine traits in males. Its production rate in testis is 7 to 8 times more than in ovaries (9,11). 

A higher level of androgens in men than in women may be one of the fundamental reasons for increased 

susceptibility and severity of SARS-CoV-2 infection in men (8,12). Using androgen deprivation therapy, 

antiandrogens, and clinically proven inhibitors of TMPRSS2 as a possible therapeutic idea inhibits the 

entrance of S pseudovirus and reduces the severity and mortality of SARS-CoV-2 infection (8,13). Patients 

with prostate cancer treated with androgen deprivation therapy would be expected to correlate with reduced 

SARS-CoV-2 incidence, and in case of infection, with lesser disease severity, which confirms the role of 

androgen and TMPRSS2 in SARS-CoV-2 infection (12,14,15). It was indicated that using antiandrogen 

drugs in hESC lung organoids reduced ACE2 expression levels via androgen signaling inhibition and caused 

the protection of these cells against SARS-CoV-2 infection (12). Therefore, androgen level might be a 

sensitive biomarker to identify the high-risk group for this new viral infection. Hyperandrogenism-related 

diseases, including prostate cancer (16) in men, polycystic ovary syndrome (PCOS) (17) with insulin 

resistance (IR) (18) in women, are the high-risk diseases for SARS-CoV-2 infection and severity (19,20). 

PCOS is the most common hyperandrogenism disease in reproductive-age women (17). It increases the risk 

of metabolic abnormalities, including IR, diabetes, and reduced glucose tolerance (21). IR as, one of the 

most important features of PCOS, is the cause of low glucose uptake by muscle, adipose, and liver tissues 

or insufficient production of insulin by pancreatic β-cells. Therefore, hyperandrogenism is associated with 

hyperinsulinemia in PCOS women with reduced insulin sensitivity (14,18,22). Based on recent researches, 

epidemiological studies have predicted that PCOS women are more susceptible to SARS-CoV-2 infection 

than healthy women (19,20,23). A recent study has determined that PCOS increases the risk of SARS-CoV-

2 infection before and after adjusting for body mass index (BMI), age, and impaired glucose regulation (20). 

In this study 21292 patients with PCOS were included and they had a higher risk of SARS-CoV-2 infection, 

about 51% (hazard ratio: 1.51 (95% CI: 1.27–1.80), P <0.001) before adjustment of confounding factors 

and about 28% (hazard ratios: 1.28 (1.05–1.56 ), P = 0.015) after adjustment (20). The SARS-CoV-2 crude 

incidence was 18.1 per 1000 person-years among women with PCOS and 11.9 per 1000 person-years among 

those without PCOS(20,23). 

In this review, we explained the complicated relations of PCOS, IR, and SARS-CoV-2 infection as 

three corners of the triangle that might increase the risk of SARS-CoV-2 infection and severity. We related 

luteinizing hormone (LH) and insulin signaling pathways such as PKA and phosphoinositide 3-kinase 

(PI3K)/protein kinase B (PKB or AKt) to overproduction of androgens and activation of TMPRSS2 

expression as two essential components in SARS-CoV-2 infection, which have not been seen in other 

reviews on this subject. Also, we introduced Forkhead box protein O1 (FOXO1) related signaling pathway 

as the critical point that leads to the activation of TMPRSS2 in ovarian theca cells. 

PCOS and IR 
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PCOS is the most common heterogeneous endocrinopathy in reproductive-age women (17). Its 

diagnosis is based on clinical complications such as hyperandrogenism (clinical and /or biochemical) and 

ovarian dysfunction (chronic oligoanovulation and/or micropolycystic morphology of the ovary) (21). 

Patients with PCOS are divided into four groups: classic, ovulatory, normoandrogenic, and complete 

phenotypes (24). Adrenocorticotropic hormone (ACTH) and LH induce androgen secretion by adrenal 

glands and gonads, respectively (9). In addition, insulin as, the pancreatic hormone, stimulates androgen 

synthesis in ovaries and adrenals (25). Ovarian androgenic precursors (especially androstenedione) have 

two distinct pathways: Aromatize to estrogen in granulosa cells under follicle-stimulating hormone (FSH)- 

induced aromatase or convert to testosterone in theca cells (26, 27). Adrenal glands are the primary producer 

of weak androgens, including dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEAS), 

and androstenedione (Fig.1). These endocrines shed androgenic precursors to the bloodstream for changing 

to bioactive androgens in extragonadal tissues such as the liver, kidney, muscle, and adipose (21). The role 

of adrenal and ovarian androgenic precursors in producing bioactive androgens like testosterone is almost 

equal in women (21,22). Some risk factors such as genetic and environmental, overproduction of 

gonadotropin-releasing hormone (GnRH), disordered gonadotropin secretion and insulin signaling, high 

production of androgens, and oxidative stress affect the normal pathway of androgen synthesis and lead to 

PCOS in reproductive-age women. Hyperandrogenism and IR are the two important features of PCOS. 

Androgen access in 10–15% of women is a consequence of PCOS (17, 28). Defects in the steroidogenesis 

process in ovaries (70-80%) and adrenals (20-30%) lead to increase androgen production (29–34). In vitro 

study on theca cells from PCOS women in long-term culture confirmed defects in steroidogenesis and 

hyperactive production of androgens (17, 35). Hyperandrogenism might encourage increased or unregulated 

follicle growth, preventing the regular selection of a single follicle for ovulation, and lead to reproductive 

abnormalities (34, 36). Over production of androgens is associated with patients with PCOS until early post 

menopause and continues to late menopause without exceeding premenopausal levels (37). IR is a 

component of metabolic syndrome that is the cause of low uptake of glucose by muscle, adipose, and liver 

tissues or insufficient production of insulin by pancreatic β-cells (21,22). Studies have indicated reciprocal 

relation between PCOS and IR. Pieces of evidence have shown that reproductive-age women with 

congenital or acquired IR display features of PCOS such as hyperandrogenism and ovarian dysfunction 

(38). On the other hand, about 75% of PCOS women involved with reduced insulin sensitivity, encounter 

IR and hyperinsulinemia (18). Any defects in insulin signaling, such as mutations or posttranslational 

alterations of the insulin receptor or downstream molecules, might cause IR in PCOS women (39). High 

androgen production in these patients reduces insulin degradation and disturbs insulin function via the effect 

on different tissues such as muscle and adipose tissue. It also causes hypertrophy of intra-abdominal 

adipocytes and lipotoxicity promotion, and all of these abnormalities lead to IR (21,40). In vitro study on 

the cultured cells of PCOS women reveals that serine phosphorylation of insulin receptor and insulin 

substrate 1 (IRS-1) instead of tyrosine phosphorylation disturbs downstream signaling and eventually leads 

to IR. This mechanism is not confirmed for all PCOS women. Therefore, the association between PCOS 

and IR has heterogenic mechanisms (41). Hyperinsulinemia in patients with PCOS causes 

hyperandrogenism by reducing sex hormone binding globulin (SHBG) levels and increasing steroidogenic 
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enzyme activity. Insulin regulates SHBG levels with an inverse association (40). Therefore, in PCOS 

women with hyperinsulinemia, a decreased level of SHBG leads to an increase in free and bioavailable 

androgens (42). Induction of steroidogenesis enzyme activity like P450c17α-hydroxylase in ovaries and 

adrenals causes the increased level of 17α-hydroxy-progesterone (17 αOH-P), androstenedione, 

testosterone, and DHEAS (Fig.1) (40). Comparing the level of secreted androgens in cultured theca cells of 

healthy and PCOS women under the effect of insulin has shown more androgen production in PCOS cells 

(43). Using insulin supplementation induces P450 cytochrome expression, LH, and insulin-like growth 

factor 1 (IGF-1) receptor production, leading to more androgen synthesis in cultured PCOS theca cells. On 

the other hand, the use of insulin-sensitizing agents in patients with PCOS, including metformin and 

troglitazone, reduces insulin levels, followed by a reduction in adrenal and ovarian androgen synthesis 

(39,44). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Androgen synthesis pathway in ovaries. 

PCOS/IR and Risk of SARS-CoV-2 Infection 

Androgen receptors that are presented on different cell membranes detect androgens. They are 

identified as nuclear transcription factors that up- or down-regulate the expression of genes with a specific 

sequence as an androgen response element (ARE) in their promoters. After forming the androgen- androgen 

receptor (AR) complex, nucleus translocation, and dimerization, this complex binds to the ARE sequence 

of genes, and different proteins as coactivators or corepressors add to this complex (45–47). TMPRSS2 is 

one of the host essential components for the entrance of SARS-CoV-2.  After viral binding of the S protein 

to the human ACE2 receptor, host TMPRSS2 activates the S protein by disporting it into S1 and S2 subunits. 

S1 binds to the peptidase domain (PD) of the ACE2 receptor through RBD, and S2 facilitates membrane 
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fusion1. A study on the TMPRSS2 signaling pathway in an androgen-sensitive human prostate 

adenocarcinoma-derived cell line (LNCaP) (31) and human lung adenocarcinoma-derived cell line (A549) 

(48) has elucidated that TMPRSS2 is the androgenic inducible gene. It has a 15-bp ARE at 148 bp upstream 

of the transcription start site for binding androgen-AR complex (49,50). Upregulation of TMPRSS2 

expression is typically in epithelial tissue in the prostate and to a lesser extent in the bile duct, kidney, lung, 

breast, pancreas, salivary gland, colon, stomach, small intestine, and ovary (51). Primarily, the clinical value 

of TMPRSS2 is associated with a prostate cancer diagnosis and cancer therapy (52). TMPRSS2 gene 

translocation with Erythroblast Transformation Specific (ETS) family comprises about 50% of prostate 

cancers (31,50,53). In addition to prostate cancer, the proteolytic activity of TMPRSS2 is essential for the 

spread and pathogenesis of human respiratory tract viruses such as influenza A viruses (H1N1, H3N2), 

SARS-CoV, and MERS-CoV (54–60). Therefore, before the SARS-CoV-2 pandemic, the role of androgens 

in TMPRSS2 induction and TMPRSS2 activity in respiratory viral infections were indicated. The amount 

of androgen secretion and the expression level of TMPRSS2 and ACE2 are effective factors in determining 

the incidence of SARS-CoV-2 infection (5,16). The previous data confirmed that PCOS features such as 

hyperandrogenism, low vitamin D, hyper inflammation, obesity, type 2 diabetes, and hypertension are the 

risk factors for SARS-CoV-2 infection and related outcomes. Therefore, PCOS increases the risk of SARS-

CoV-2 infection in reproductive-age women. Using antiandrogen drugs (e.g., spironolactone or finasteride) 

by these patients might reduce this viral infection and severity (61). There is little research to elucidate the 

association of PCOS with host essential components of SARS-CoV-2, including TMPRRS2 and ACE2. 

Meng et al. have indicated that the expression of ACE2 and TMPRSS2 in theca cells shows the capability 

of these cells to be infected by SARS-CoV-2 (62). The study by Alexandra M. Huffman et al. indicated the 

role of hyperandrogenism in SARS-CoV-2 infected DHT-treated female mice. Upregulation of ACE2 and 

TMPRSS2 in different tissues of treated mice increased the risk of SARS-CoV-2 infection and severity. 

Therefore, as a risk factor in PCOS women, hyperandrogenism might cause less protection and more 

severity against COVID-19 injuries (63). IR and SARS-CoV-2 infection have reciprocal relations. 

 It intensifies hyperandrogenism in PCOS women and, in other words, is one of the SARS-CoV-2 

manifestations. Santos et al. explain that in the face of viral infection, serine kinases, including protein 

kinase R (PKR) and PKR-like endoplasmic reticulum kinase (PERK), as a type of integrated stress response, 

induce IRS-1 serine phosphorylation, which leads to IR. Therefore, it seems that SARS-CoV-2 infected 

patients are associated with IR (64). The binding of SARS-CoV-2 to the ACE2 receptor disturbs its primary 

function as the convertor of angiotensin 2 into angiotensin (1-7). Then ACE2 removes its protection versus 

the renin-angiotensin-aldosterone system (RAAS) activation, which follows IR, cellular oxidative stress, 

inflammation, hypertension, and cardiac dysfunction (22,64-66). Increased risk of IR induces the expression 

of pancreatic ACE2, which promotes SARS-CoV-2 entrance as the receptor for S protein. Therefore, IR 

meditated by SARS-CoV-2 infection has a positive feedback effect on the severity of this viral infection in 

the pancreatic cell (22). In addition, Muchuan et al. reported that SARS-CoV-2 binding to β- pancreatic 

ACE2 receptor might change their function, reducing insulin secretion and increasing the risk of IR in these 

patients (65). IR, PCOS, and SARS-CoV-2, are the three corners of the triangle related to each other (Fig.2). 

Therefore, it needs to illustrate their probable molecular mechanism to understand their interaction better.  
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PCOS Signaling via LH and SARS-CoV-2 Infection 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The relation of insulin resistance, PCOS, and SARS-CoV2 infection. 

Overproduction of GnRH via GnRH neurons in the hypothalamus is one of the leading causes of ovarian 

hyperandrogenism in PCOS women (67). GnRH is released into the hypophyseal portal bloodstream and 

arrives at gonadotropic cells in the anterior pituitary gland. GnRH pulses induce LH and FSH production in 

gonadotropic cells and are released into the bloodstream. LH stimulates theca cells produce androgens, 

whereas FSH stimulates granulosa cells to produce estrogens (68) (Fig.3). The amount of secreted LH and 

FSH from gonadotropic cells is under the size and frequency of GnRH pulses, androgen, and estrogen levels 

in the bloodstream. Studies have indicated that increased GnRH secretion in women induces the 

overproduction of LH by the pituitary, which stimulates the overproduction of androgens by theca cells in 

the ovaries. In the next step, FSH stimulates granulosa cells to aromatize androgens into estrogens, but 

insufficient FSH causes excess androgen abnormalities in PCOS women (17,69). In addition, excess ovarian 

androgens in the positive feedback loop leading high-frequency hypothalamic GnRH pulsations, stimulate 

LH production more than FSH. So estrogen synthesis is reduced, and LH superiority causes more ovarian 

androgen production (35,70). LH mediated hyperandrogenism in PCOS women via overexpression of 

steroidogenic enzymes in ovarian theca cells (68). In this way, LH binds to G protein-coupled receptors in 

the plasma membrane of theca cells and increases cAMP production by adenylate cyclase activation. Then 

cAMP, as the second messenger, stimulates protein kinase A (PKA) and translocates into the nucleus and 

phosphorylates the cAMP-response element binding protein (CREB). Phosphorylated CREB binds to the 

cAMP-response element (CRE) in the promoter region of gene coding for steroidogenic enzymes such as 

steroidogenic acute regulatory protein (StAR), cytochrome P450scc enzyme (CYP11A1), cytochrome P450 

17A1 (CYP17A1), and 3β-Hydroxysteroid dehydrogenase (3β-HSD) and induces their expression (Fig.3) 

(67,68,71). Each of these steroidogenic enzymes catalyzes the particular step during androgen synthesis and 

finally causes the production of androgens in ovarian theca cells. In this way, StAR is a transporter protein 

that regulates cholesterol transferred from the outer mitochondrial membrane to the inner membrane. 

CYP11A1 catalyzes cholesterol's conversion to pregnenolone, which is the first step in all steroidogenesis 

synthesis. CYP17A1 is located in the endoplasmic reticulum and has 17α-hydroxylase and 17, 20-lyase 

ability to convert 17α-hydroxypregnenolone to DHEA, and 3β-HSD catalyzes the biosynthesis of the 
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androstenedione from DHEA (Fig.1) (68). In addition to the PKA pathway, LH induces androgen synthesis 

via PI3K/AKt pathway, which is investigated in bovine 68 and goat theca cells (72). It was determined that 

in bovine theca cells, AKt phosphorylates the FOXO1 transcription factor and causes the dissociation of 

FOXO1 from DNA, followed by its removal from the nucleus and translocation to the cytoplasm. Therefore, 

other transcription factors can induce CYP17A1 mRNA expression and androgen synthesis in theca cells. 

In PCOS women, higher activity of steroidogenic enzymes such as StAR, CYP11A1, CYP17A1, and 3β-

HSD under the effect of LH may increase the formation of androgen-AR complex and promote ACE2 and 

TMPRSS2 expression levels in these patients. Therefore, overproduction of LH by GnRH may increase the 

rate of SARS-CoV-2 entrance and cause severe infections in these patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. LH and insulin induce overproduction of androgens in theca cells via the activation of PKA and PI3K /Akt signaling 

pathways, respectively. 

PCOS Signaling via Insulin and SARS-CoV-2 Infection 

β-pancreatic cells produce insulin, and some factors such as blood sugar concentration, β-cells' 

performance efficiency, tissue response, secretion and clearance rate, and obesity influence the plasma 

concentration of insulin (21). This pancreatic hormone induces androgen synthesis via the hypothalamic-

pituitary-ovarian (HPO) axis and adrenals(18,44,73,74). According to HPO, insulin induces the pituitary 

and ovaries to produce LH and steroidogenic enzymes respectively. Research on animal cell culture 

confirmed this idea (70). In ovarian theca cells, insulin binds to tyrosine kinase receptors, stimulates their 

dimer formation, and autophosphorylation. These adaptations help to fit the structure of the receptors as a 

binding site for IRS-1. Then, insulin receptors activate IRS-1 by phosphorylation. Activated IRS-1 recruit 

PI3K to convert phosphatidylinositol 4, 5-bisphosphate into phosphatidylinositol 3, 4, 5-trisphosphate 

(PIP3). In the next step, PIP3 as a second messenger, binds to phosphatidylinositol-dependent protein kinase 

-1 (PDK-1) and activates this enzyme to phosphorylate other kinases such as AKt. It translocates to the 
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nucleus and phosphorylates FOXO1, dissociates from DNA, and moves from the nucleus to the cytoplasm 

(40, 67). FOXO1 phosphorylation and dissociation have two important results in patients with SARS-CoV-

2 infection and insulin-resistant. First, in the absence of FOXO1, other transcription factors easily bind to 

target genes and up-regulate steroidogenic enzymes expression in ovaries (67, 75). Second, FOXO1 inhibits 

the activity of the androgen-AR complex and acts as a transcription factor; therefore, phosphorylation 

removes the inhibition of FOXO1, and the androgen-AR complex binds to ARE sequence in the promoter 

of target gene such as TMPRSS2 and causes to up-regulate the expression of this gene in ovarian theca cells 

(47–49, 53). Finally, the overexpression of steroidogenic enzymes and TMPRSS2 are the two essential 

factors that increase the risk of COVID-19 in patients with insulin resistant (Figs 3, 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Overexpression of TMPRSS2 under the effect of insulin leads to an increase of SARS-CoV2 entrance in PCOS patients. 

Conclusion 

Collectively, the SARS-CoV-2 entrance mechanism is dependent on ACE2, TMPRSS2, and androgen 

levels of host cells. Hyperandrogenism related diseases such as PCOS associated with IR in women during 

reproductive-age are high-risk for this new pandemic. LH and insulin in these women induce the 

upregulation of steroidogenic enzymes and activation of the androgen-AR complex in ovaries. These 

hormones induce PKA and PI3K/AKt signaling pathways, which act via phosphorylation of CREB and 

FOXO1, respectively. Finally, overproduction of androgen synthesis and up-regulation of TMPRSS2 and 

ACE2 prepare a susceptible situation for SARS-CoV-2 infection and severity. Therefore, PCOS-associated 

IR may increase the risk of SARS-CoV-2 infection in reproductive age women. These reports need further 

clinical and fundamental research to clarify their association and the use of appropriate treatment to reduce 

the long-term infection in this group of patients is therefore recommended. 
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