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17p13.3 microduplications are rare copy number variations (CNVs) associated with variable phenotypes,
including facial dysmorphism, developmental delay, intellectual disability, and autism. Typically, when a
recognized pathogenic CNV is identified, other genetic factors are not considered. We investigated via whole-
exome sequencing the presence of additional variants in four carriers of class | 17p13.3 microduplications. A
730 kb 17p13.3 microduplication was identified in two half-brothers with intellectual disability, but not in a third
affected half-brother or blood cells from their normal mother (Family A), thus leading to the hypothesis of
maternal germline mosaicism. No additional pathogenic variants were detected in Family A. Two affected
siblings carried maternally inherited 450 kb 17p13.3 microduplication (Family B); the three carriers of the
microduplication exhibited microcephaly and learning disability/speech impairment of variable degrees. Exome
analysis revealed a variant of uncertain significance in RORA, a gene already linked to autism, in the autistic
boy; his sister was heterozygous for a CYP1B1 pathogenic variant that could be related to her congenital
glaucoma. Besides, both siblings carried a loss-of-function variant in DIP2B, a candidate gene for intellectual
disability, which was inherited from their father, who also exhibited learning disability in childhood. In
conclusion, additional pathogenic variants were revealed in two affected carriers of class | 17p13.3
microduplication (Family B), probably adding to their phenotypes. These results provided new evidence
regarding the contribution of RORA and DIP2B to neurocognitive deficits, and highlighted the importance of full
genetic investigation in carriers of CNV syndromes with variable expressivity. Finally, we suggest that
microcephaly may be a rare clinical feature also related to the presence of the class | 17p13.3 microduplication.
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Deletions at 17p13.3 are associated with
isolated lissencephaly when encompassing
platelet-activating factor acetylhydrolase IB subunit
alpha (PAFAH1B1, OMIM *601545), the major
gene responsible for the phenotype, or with Miller-
Dieker lissencephaly syndrome (MDS, OMIM
#247200), when the MDS telomeric critical region,
containing eight additional genes (PRPF8, RILP,
SCARF1, PITPNA, INPP5K, MYO1C, CRK, and
YWHAE), is also deleted (1). MDS, characterized
by lissencephaly, dysmorphic facial features, and
variable congenital malform-ations depending on
the size of the deletion, presents a more severe
cerebral phenotype, with tyrosine 3-
monooxygenase/ tryptophan 5-monooxy-genase
activation protein epsilon (YWHAE, OMIM
*605066) gene being the candidate gene to explain
it (2, 3).

Microduplications at 17p13.3 overlapping the
MDS region were also documented (2-8; OMIM
#613215- chromosome 17pl3.3, centromeric,
duplication syndrome), although its clinical
significance is still poorly understood, probably
because they are rarer than 17p13.3 deletions and
present variable sizes. Bruno et al. (2010) proposed
to distinguish 17p13.3 microduplications as class I,
when encompassing the YWHAE gene, but not
PAFAH1B1, and class Il, involving PAFAH1B1,
with the inclusion of YWHAE and CRK being
variable (7). Clinical signs shared by individuals
carrying either class | or class Il microduplications
include facial dysmorphisms, intellectual disability,
neuropsychomotor  developmental delay, and
autism spectrum disorder, although none of these
features are necessarily present in all patients
(4,8,9).

The most challenging aspect in determining
the contribution of such 17p13.3 microduplications
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to the phenotype is the variable clinical
manifestation and incomplete penetrance (5, 7, 10,
11); the presence of a known pathogenic CNV is
generally assumed to be the main cause of the
phenotype, and other factors that could contribute
to clinical manifestations are not usually
investigated (12-15). Reported patients with
17p13.3  microduplication have not been
investigated for concurrent pathogenic mutations,
as well as in many other CNV syndromes that
exhibit incomplete penetrance and variable
expressivity (2-8, 10, 11, 16-18). In neurodev-
elopmental diseases, this is particularly concerning,
considering the two-hit model proposed by
Girirajan et al. (2010), in which a secondary
disruptive event- either another CNV or a point
mutation- would result in more severe clinical
manifestations. Therefore, mechanisms that may
explain the penetrance and expressivity of these
conditions are not fully elucidated (12, 19).

In this study, we report two families in which
class | 17p13.3 microduplications are segregating
with variable clinical pictures. We searched for
possible variants contributing to the phenotype of
the affected carriers through whole exome
sequencing.

Materials and methods

Clinical reports

The Research Ethics Committee of the
Institute of Biosciences, University of Sao Paulo,
approved this study under the protocol
CEP_2589398, and signed informed consents were
obtained from the mother in Family A, and from
both parents in Family B. Family A includes three
affected maternal half-siblings from unrelated
fathers (Figure 1a). A-11-2 was born upon 32 weeks
gestation; at birth, he developed respiratory distress
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evolving to pneumothorax, and had one episode of
seizure. He was able to sit up without support at
about 3 years of age, walking independently soon
after, spoke only isolated words until the age of 4
years, and was toilet trained after 5 years of age.
When examined at the age of 9 years, he presented
moderate/severe intellectual disability, being
dependent on personal hygiene. He also presented
hyperactivity and poor balance. Recurrent inner ear
infections were reported. His physical examination
revealed an occipitofrontal circumference (OFC)
of 5lcm (2"-50" centile, -1.1SD), convergent
strabismus, and signs of connective tissue
involvement (hypoplastic ears, high-arched palate,
flat feet, and joint hypermobility). Brain MRI
showed corpus callosum dysgenesis.

A-11-3 was delivered at term after an
uneventful pregnancy; he sat up without support at
the age of 9 months, walked independently at 14
months, spoke the first words at the age of 3.5
years, and was toiled trained at the age of 4 years.
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When examined at the age of 8 years, he presented
moderate intellectual disability. His physical
examination revealed an OFC of 53 cm (50"-98"
centile, -1.1SD), and like his brother, signs of
connective tissue involvement (mildly hypoplastic
ears, high-arched palate, joint hypermobility),
besides thin sclera with choroid visible on some
spots. Brain MRI did not reveal any alterations.

A-11-4 was delivered at term after an
uneventful pregnancy. Although he had normal
motor milestones, he presented marked speech
delay and intellectual disability; when examined at
the age of 6 years, he was able to speak just a few
isolated words; he was hyperactive, having been
diagnosed with autism spectrum disorder (ASD).
His physical examination revealed an OFC of 53
cm (50™-98" centile, +1SD), joint hypermobility,
and mild planovalgus feet.

In common, the three half-siblings presented
hyperextensible joints, speech impairment, and
intellectual disability.
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Fig. 1. Pedigrees of Family A (a) and Family B (b). Arrows indicate the propositus of each family, and filled symbols represent

individuals affected by specific clinical signs, according to the legend.
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In Family B, the two affected siblings, a boy
and a girl, were born to a non-consanguineous
couple (Figure 1b). B-11l1-1 was born after a 32-
week gestation time; her mother was diagnosed
with toxoplasmosis in the early period of the
pregnancy. The girl had normal newborn screening
tests; however, she was born with congenital
glaucoma, which was controlled therapeutically.
The child evolved with motor and speech delay,
and some repetitive and restrictive behaviors. She
presented learning disabilities and slurred speech
(dysarthria), but she learned to read and write
proficiently despite having difficulties to cope with
abstract issues. Her physical examination at the age
of 17 years revealed a body weight (BW) of 50 Kg
(25" centile, -0.7SD), height (H) of 173 cm (95"
centile, +1.6 SD), and marked microcephaly (OFC
of 49 cm, <2" centile, -4.9SD). Brain MRI was
suggestive of microcephaly vera.

B-I11-2 was born at term after an uneventful
pregnancy. Newborn screening tests were normal.
The boy evolved with important speech impairment
(with dyslalia), despite speaking the first words at
the age of 1 year; hyperactivity, repetitive and
restrictive social behaviors were noted. He
presented conspicuous dyspraxia, which interfered
negatively with his learning and motor abilities; he
also showed some difficulties in reading and
counting. Given this constellation of signs and
symptoms, a diagnostic of ASD was established.
His physical examination at the age of 9 years
revealed a weight of 23 kg (5" centile, -0.9 SD), a
height of 131 cm (34™ centile, -0.4 SD), and
microcephaly (OFC of 48 cm, <2" centile, -3.5
SD). Brain MRI did not reveal any alterations.

Both parents had learning disabilities and
barely finished elementary school. The mother also
presented microcephaly (OFC of 51cm,<2™ centile,
-3.1SD), and speech impairment. A paternal uncle
presented significant delay in his speech
acquisition, being able to speak only at the age
of 8 years.
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In common, the mother and her two children
presented microcephaly, learning disabilities, and
speech impairment.

Molecular analyses

Genomic DNA was extracted from peripheral
blood of the three siblings and their mother in
Family A, and from the two siblings and their
parents in Family B. The children tested negative
for fragile X syndrome. Chromosome microarray
analysis (CMA) for CNV investigation was
performed using a 180 K platform (Agilent
Technologies, California, USA), according to the
manufacturer’s recommendations. The analysis was
conducted as described previously (20).

For whole-exome sequencing (WES), libraries
were constructed using SureSelect Human All Exon
V6 (Agilent Technologies, California, USA), and
sequenced on an lllumina HiSeq platform.
Sequence alignment to the reference genome hgl9
was done through the BWA-MEM algorithm from
the BWA program (21). SortSam and
MarkDuplicates tools from PICARD (v.1.8, http://
broadinstitute.github.io/picard/) were used to
convert the SAM file into BAM and to mark the
PCR duplicates, respectively. Also, we used the
GATK 3.7 (22) to realign indels (Realigner
TargetCreator and IndelRealigner), and to
recalibrate the basis (BaseRecalibrator, BQSR),
getting the BAM file to be used for variant calling.
Variant calling and recalibration of SNPs and indels
(VQSR) were performed using UnifiedGenotyper
and VariantRecalibrator tools from GATK 3.7,
respectively, to a set of 45 individuals. Multiallelic
variants were split up into different lines, using the
script split_ multiallelic_rows.rb from Atlas2 (23),
thus obtaining the final VCF files for analysis.
Annotations of the VCF files were carried out
through the VarSeq software (Golden Helix Inc,
Montana, USA) and Varstation platform (https:/
varstation.com/en/), and candidate variants were
filtered according to the following criteria: variant
allele frequency >0.3; read depth >20; genotype
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quality >17; population frequencies <1% (1 K
genomes, https://www.internationalgenome. org/;

gnomAD, https://gnomad.broadinstitute.org/; and
ABraOM (24), and effect missense or loss of
function. Variant prioritization was performed
through the web tool VarElect (https://varelect.
genecards. org/), using the phenotypes "intellectual
disability”, "developmental delay”, “hyperex-
tensible joints” for individual A-11-3; "intellectual
disability", "autism", “hyperextensible joints” for

LRI

individual A-11-4; “microcephaly”, “developmental

CE TS

delay”, “learning disability”,

”

glaucoma”, “speech
impairment” for individual B-IlI-1; and “speech
delay”, “microcephaly”, “autism”, “developmental

delay” for individual B-I11-2.
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Overlapping class | 17p13.3 microduplications
were detected by CMA in affected individuals from
two unrelated families. Genomic features of the
duplicated 17p13.3 segments are depicted in
Figure 2a.

In Family A, CMA was performed in the three
affected half-brothers and an interstitial 17p13.3
microduplication encompassing 730 kb was
disclosed only in individuals A-I1-2 and A-11-3:
arr[GRCh38] 17p13.3(1113701_1844036)x3, ISCN
2016 (Figure 2b). This microduplication was not
detected
excluded the possibility of a maternal balanced

in their mother, and FISH analysis
rearrangement (data not shown); fathers were
unavailable for testing.WES was performed for the
half- brothers A-11-3 and A-11-4. A-11-3 was found
to carry 603 rare coding non-synonymous variants
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Fig. 2. 17p13.3 microduplications in Families A and B. (a) Genomic features of the duplicated 17p13.3 segment, according to CMA
mapping for each individual represented in (b) and (c) - the curated isoforms of the affected genes (NCBI Ref Seq genes track) are shown as
dark blue lines, in which the vertical bars denote exons (images derived from the UCSC Genome Browser, freeze October 2020); (b) CMA

profile showing the microduplication at 17p13.3 in individual A-11-3 from Family A; (c) CMA profile showing the microduplication at
17p13.3 in individual B-111-2 from Family B.

Int J Mol Cell Med Autumn 2020; Vol 9 No 4 300


https://www.internationalgenome/
https://varelect/
http://dx.doi.org/10.22088/IJMCM.BUMS.9.4.296
https://ijmcmed.org/article-1-1491-en.html

[ Downloaded from ijmcmed.org on 2025-10-22 ]

[ DOI: 10.22088/IIMCM.BUMS.9.4.296 |

Variable expressivity of 17p13.3 microduplication

Rare coding non-synonymous variants detected in individuals A-11-3, B-111-1 and B-111-2.

Gene Genomic ID Inheritance | ACMG Variant Exon Frequencies
Coordinates classification | HGVS c. HGVS p. 1K Gnhom ABra
(hg38) (2015) Genomes | AD oM
Exomes
A-11-3 | LDLR 19:11129602 | rs137853964 Pathogenic NM_000527. p.Val827ll 17 0.0004 0.001 Absent
ClinVar: 5:c.2479G>A e
375840
B-111-1 | CYP1B1 | 2:38071251 rs79204362 Mother Pathogenic NM_000104.3: NP_00009 3 0.004 0.006 Absent
Clinvar: 7739 c.1103G>A 5.2:p.Arg3
68His
B-111-2 | RORA rs771655652 Father VUS NM_134260.2: NP_59902 6 Absent Absent | Absent
15:60511244 c.901G>A 2.1:p.vVal3
01Met
B-111-1/ | DIP2B | 12:50718953 | rs768972285 Father Pathogenic NM_173602.3: N/A Intron Absent Absent | Absent
B-111-2 €.2962-2_2962- 24 (spli
1delAG Cing)

(582 missense, three frameshift, 11 nonsense, three
splicing, two stop-loss, and four initiator codon
variants), while A-11-4 was found to carry 606
variants (578 missense, 13 frameshift, 10 nonsense,
three splicing, one stop-loss, and one initiator
codon variants). Pathogenic variants related to their
phenotypes were not identified, including in the
analysis of 1,809 genes related to intellectual
(bbb -
Deciphering Developmental Disorders project) and

disability/developmental  disorders
391 genes related to autism (SFARI Gene project).
A pathogenic variant in the low density lipoprotein
receptor gene (LDLR; OMIM *606945; NM_
000527.5:c.2479G>A; p.Val827lle; reported in
Clinvar: 375840) was detected in A-I1-3, being a
secondary finding (Table 1). Rare variants were not
observed in genes mapped to the microduplication
In family B, an interstitial 450 kb
microduplication at 17p13.3 was detected in the

segment.

propositus B-I11-1 and his sister B-111-2, inherited
from their mother (B-11-1): arr [GRCh38] 17p13.3
(1192285_ 1641601) x3 mat, ISCN 2016 (Figure
2c).

WES for investigating rare variants was

performed in the siblings and their mother.
Excluding synonymous, the mother was found to
carry 489 rare coding variants (455 missense, 12
frameshift, 13

variants). Her daughter B-I11-1 carried 467 variants

nonsense, and eight splicing
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(433 missense, 19 frameshift, eight nonsense, and
seven splicing variants). Her son B-I11-2 had 522
rare variants (484 missense, 16 frameshift, 14
nonsense, seven splicing, and one stop-loss variant).

No rare variants were observed in genes
mapped to the microduplication segment in the
three affected individuals. However, three rare
coding variants that could be related to the
children’s phenotypes were identified, all in
heterozygous state (Table 1; classification followed
the ACMG 2015 criteria) (25). A maternally
inherited pathogenic variant in the cytochrome
P450 family 1 subfamily B member 1 gene
(CYP1B1; OMIM  *601771; NM_000104.3:
€.1103G>A; p.Arg368His; reported in ClinVar:
7739) was identified in B-I11-1; no additional small
intragenic deletions or duplications in CYP1B1
were found in a follow-up analysis. A paternally
inherited variant of uncertain significance (VUS)
was observed in the RAR related orphan receptor A
gene (RORA; OMIM *600825; NM_134260. 2:c.
901G>A; p.Val301Met) in B-Il1-2. In addition, a
paternally inherited pathogenic variant (splice site
mutation) was detected in both siblings in the disco
interacting with protein 2 homolog B gene (DIP2B;
OMIM *611379; NM_173602.3:¢c.2962-2_2962-

1delAG).

Discussion
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We described two unrelated families in which
class | 17p13.3 microduplications segregated in
association with variable phenotypes.

In Family A, only two of the three affected
half-brothers, A-11-2 and A-I1-3, both presenting
similar phenotypes, were carriers of the 17p13.3
microduplication; the absence of the CNV in blood
cells of their mother led to the hypothesis of
mosaicism, with the microduplication being present
at least in her germline, as it was inherited by two
of her sons from unrelated fathers. However, since
the fathers were not available for testing, the
possibility of false paternity cannot be excluded.
The clinical signs of these two half-brothers
included delayed speech acquisition and moderate
intellectual disability, traits commonly described in
the literature in individuals carrying this type of
microduplication (3, 4, 6). In A-l1-2, perinatal
events could have contributed to the severity of his
phenotype; he also had recurrent inner ear
infections, a feature reported in several patients
carrying «class | and class Il 17p13.3
microduplications, although never recognized as a
symptom of this syndrome (3, 6). Of note, the three
half-brothers presented joint hypermobility, a
feature reported in 17p13.3 microduplications (6);
however, this is a quite unspecific sign and its
presence in the patient who did not carry the
microduplication suggests the interaction with other
genes.

The exome analysis of A-11-3 and A-11-4 did
not reveal any rare variant associated with their
phenotypes, but a pathogenic mutation in the LDLR
gene was found in A-I1-3, constituting a secondary
finding (26). LDLR is associated with autosomal
dominant familial hypercholesterolemia (OMIM
#143890 - hypercholesterolemia, familial, 1), and
this particular variant was detected by Durst et al.
(2017) in eight patients presenting modestly
elevated low-density lipoprotein cholesterol (LDL-
C) levels, thus being a relevant information in the
genetic counseling process (27). Therefore, the

Tolezano G et al.

phenotype of the half-brothers A-Il-2 and A-II-3
were probably mainly due to the presence of the
17p13.3 microduplication, although the possibility
of an undetected pathogenic variant segregating in
this family remains.

In Family B, the siblings inherited the class |
17p13.3 microduplication from their less affected
mother, whose phenotypic manifestations were
microcephaly, mildly impaired speech, and learning
difficulties, which reinforce the variability of
expression of this pathogenic CNV (5, 7, 10, 11).
The boy B-lIl-2 exhibited autism with severe
speech delay, very common traits in individuals
with class | 17p13.3 microduplication (4), and
microcephaly. His sister also had learning
difficulties, impaired speech, and microcephaly, in
addition to congenital glaucoma.

Although learning difficulty, autism, and
speech impairment could be explained by the
17p13.3 microduplication (4, 6), features such as
microcephaly and congenital glaucoma observed in
Family B, as well as strabismus in individuals of
Family A, were not previously related to this CNV.
We performed an analysis of glaucoma-related
genes in the girl, and found that she was
heterozygous for a maternally inherited pathogenic
missense variant in the CYP1B1 gene, whose
mutations are the most common cause of primary
congenital glaucoma (OMIM #231300 - glaucoma
3, primary congenital, A), corresponding to about
50% of the cases identified in the Brazilian
population (28). However, this pathogenic variant
alone is not sufficient to explain her phenotype, as
glaucoma due to CYP1Bl1 mutations shows
typically an autosomal recessive inheritance (29),
and the other three CYP1B1 variants in this patient
were classified as benign (intronic or at the 3° and
5> UTRs). We also investigated LTBP2, TEK, and
MYOC, three genes related to congenital glaucoma;
MYOC, particularly, is suggested to play a role in
the disease together with CYP1B1, characterizing a
possible digenic inheritance of the phenotype (30).

Int J Mol Cell Med Autumn 2020; Vol 9 No 4 302
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However, the detected variants in LTBP2, TEK, and
MYOC were predicted to be benign or VUS, being
predominantly intronic, making it difficult to
determine if one of them could be a contributing
factor to her glaucoma. A possible explanation for
this particular phenotype could be the CNV itself
acting as a second-hit for the CYP1B1 variant,
considering that CRK, one of the genes
encompassed by thel7g13.3 microduplication in
Family B, has been already implicated in
intraocular pressure, a susceptibility factor for
glaucoma, in a genome-wide association study (31).
Her mother also carries both variants, but she has
not gone through ocular evaluation.

A VUS in the RORA gene was found in the
boy B-111-2. The RORA protein is a transcriptional
regulator whose levels in vitro are lower in the
frontal cortex of normal males compared to age-
matched females (32). Heterozygous mutations in
this gene are a known cause of intellectual
developmental disorder with or without epilepsy or
cerebellar ataxia (OMIM #618060 - intellectual
developmental disorder with or without epilepsy or
cerebellar ataxia); interestingly, missense changes
in the protein ligand-binding domain (exons 6 to
10), as detected here, were reported to lead to
autistic features and mild intellectual disability with
reduced penetrance, due to haploinsufficiency (33).
These data are in accordance with our findings
since patient B-111-2 carries a missense variant in
exon 6 of RORA and presents ASD associated with
speech delay. This variant was inherited from his
father, who had learning disability, but no autistic
features, and might be adding to the boy’s
phenotype, who also carries the 17p13.3
microduplication, as a second-hit (19), then
supporting the role of RORA variants in
neurodevelopmental disorders, and as a candidate
gene for autism.

It is noteworthy that a rare splicing variant
affecting the DIP2B gene was also detected in the
siblings from Family B, inherited from their father.
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A CGG-repeat expansion in DIP2B, associated with
the fragile site FRA12A at chromosome 12qg13.1,
was described as the molecular basis of dominant
intellectual disability (OMIM #136630 - mental
retardation, FRA12A type; (34); the authors
proposed that reduced expression of DIP2B in the
brain due to CGG-repeat methylation could mediate
the neurocognitive problems associated with the
FRA12A, although with incomplete penetrance and
variable expressivity. After this initial report, other
patients with DIP2B mutations were not described;
hence, DIP2B can be considered an intellectual
disability candidate gene, deserving further
investigation, and it is possible that different types
of DIP2B loss-of-function mutations could lead to
neurodevelopmental defects. Altogether, data point
out that the splicing DIP2B variant identified in
Family B probably contributed to the learning
disability phenotype of their carriers, providing new
evidence of its impact on neurodevelopment.

In Family B, both siblings and their mother
have microcephaly, which is not a common feature
of class | 17p13.3 microduplications, excepting
those cases in which the PAFAH1B1 gene is
involved (2, 4-6, 8). Although the mother had
toxoplasmosis during B-I11-1 pregnancy, none of
the children presented any of the classic signs of
severe congenital  toxoplasmosis, such as
chorioretinitis, intracranial calcifications, and
hydrocephalus (35). Microcephaly is a common
feature in  Miller-Dieker syndrome, which
necessarily involves the deletion of the PAFAH1B1
and YWHAE genes, among others present in the so-
called MDS telomeric critical region, such as CRK
and MYO1C (1). The patient reported by Ho et al.
(2012) and the siblings herein reported are the only
ones to have microcephaly without PAFAH1B1
being duplicated (2-5). It is known that aberrant
neuronal migration accounts for a substantial
proportion of cases of congenital microcephaly and
intellectual disability (36, 37). Functional evidence
demonstrates a wide expression of YWHAE in the
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brain, playing an important role in neuronal
signaling, as well as in the differentiation of
neuronal progenitor cells, which is consistent with
the pathophysiology of microcephaly (11, 36).
Therefore, it is possible that microcephaly, although
rare, could also be a clinical sign of the class |
17p13.3 microduplication, encompassing only the
YWHAE gene.

In  conclusion, we detected additional
pathogenic variants in the carriers of class |
17p13.3 microduplication associated with their
phenotypes in one of the two studied families. Rare
variants were disclosed in genes related to autism,
congenital glaucoma, and intellectual disability; in
particular, we provided new evidence regarding the
contribution of RORA and DIP2B to neurocognitive
deficits such as autism and intellectual disability,
respectively. These results showed that additional
genetic investigation in 17p13.3 microduplication
carriers can lead to the identification of modifier
variants of the expressivity of this pathogenic CNV.
Finally, we suggest that microcephaly is a rare
clinical feature related to the presence of the class |
17p13.3 microduplication.

Accession Numbers

The 17p13.3 microduplications and LDLR,
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