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Down syndrome (DS) is a birth defect with huge medical and social costs, caused by trisomy of whole or part of 

chromosome 21. It is the most prevalent genetic disease worldwide and the common genetic cause of intellectual 

disabilities appearing in about 1 in 400-1500 newborns. Although the syndrome had been described thousands of 

years before, it was named after John Langdon Down who described its clinical description in 1866. Scientists 

have identified candidate genes that are involved in the formation of specific DS features. These advances in turn 

may help to develop targeted therapy for persons with trisomy 21. Screening for DS is an important part of 

routine prenatal care. Until recently, noninvasive screening for aneuploidy depends on the measurement of 

maternal serum analytes and ultrasonography. More recent progress has resulted in the development of 

noninvasive prenatal screening (NIPS) test using cell-free fetal DNA sequences isolated from a maternal blood 

sample. A review on those achievements is discussed. 
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own syndrome (DS) is the most frequently 

occurring chromosomal abnormality in 

humans and affecting between 1 in 400-1500 babies 

born in different populations, depending on 

maternal age, and prenatal screening schedules (1-

6). DS is the common genetic cause of intellectual 

disabilities worldwide and large numbers of 

patients throughout the world encounter various 

additional health issues, including heart defects, 

hematopoietic disorders and early-onset Alzheimer 

disease (7-9). The syndrome is due to trisomy of the 

whole or part of chromosome 21 in all or some cells 

of the body and the subsequent increase in 

expression due to gene dosage of the trisomic genes 

(10). It is coupled with mental retardation, 

congenital heart defects, gastrointestinal anomalies, 
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Fig 1. Down syndrome statue representing individual with 
trisomy 21 related to almost 2500 years ago (16). 

weak neuromuscular tone, dysmorphic features of 

the head, neck and airways, audiovestibular and 

visual impairment, characteristic facial and physical 

features, hematopoietic disorders and a higher 

incidence of other medical disorders. The incidence 

of births of children with DS increases with the age 

of the mother. However, due to higher fertility rates 

in younger women, the probability of having a child 

with DS increases with the age of the mother and 

more than 80% of children with DS are born to 

women under 35 years of age (7, 11).  

Historical background 

Approximately 2500 years ago, Bernal and 

Briceno thought that certain sculptures represented 

individuals with trisomy 21, making these potteries 

the first empirical indication for the existence of the 

disease (Figure 1). Martinez-Frias identified the 

syndrome in 500 patients with Alzheimer disease in 

which the facial features of trisomy 21 are clearly 

displayed. Different scientists described evident 

illustration of the syndrome in 15th and 16th century 

paintings. Esquirol wrote phenotypic description of 

trisomy 21 in 1838. English physician, John 

Langdon Down explained the phenotype of children 

with common features noticeable from other 

children with mental retardation. He referred them 

“Mongoloids” because these children looked like 

people from Mongolia (12-15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This disease was named “Down Syndrome” in 

honor of John Langdon Down, the doctor who first 

recognized the syndrome in 1866 but until the 

middle of the 20th century, the cause of DS 

remained unknown. The probability that trisomy 21 

might be a result of a chromosomal abnormality 

was suggested in 1932 by Waardenburg and 

Davenport (12, 17). A revolution finally took place 

in 1956, when Joe Hin Tjio and Albert Levan 

described a set of experimental situations that 

allowed them to precisely characterize the number 

of human chromosomes as 46. During the three 

years of the publication of this revolutionary work, 

Jerome Lejeune in France and Patricia Jacobs in the 

United States were able to identify an extra copy of 

chromosome 21 in karyotypes prepared from DS 

patients. Then, in the 1959, researchers finally 

determined that presence of an additional copy of 

chromosome 21 (referred to trisomy 21) is the 

cause of DS (1, 18). 

Genetic basis 

Chromosome 21 is the smallest human 

autosome with 48 million nucleotides and depicts 

almost 1–1.5% of the human genome. The length of 

21q is 33.5 Mb and 21 p is 5–15 Mb. More than 

400 genes are estimated to be on chromosome 21 

(Table 1). Chromosome 21 has 40.06% repeat 

content comprising short interspersed repeatitive 

elements (SINEs), long interspersed repeatitive 

elements (LINEs), and long terminal repeats 

(LTRs) (3, 11, 19). The most acceptable theory for 

the pathogenesis of trisomy 21 is the gene-dosage 

hypothesis, which declares that all changes are due 

to the presence of an extra copy of chromosome 21 

(12). Although it is difficult to select candidate 

genes for these phenotypes, data from transgenic 

mice suggest that only some genes on chromosome 

21 may be involved in the phenotypes of DS and 

some gene products may be more sensitive to gene 

dosage imbalance than others. These gene products 

include morphogens, cell adhesion molecules, 

components of multi-subunit proteins, ligands and 
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their receptors, transcription regulators and 

transporters. A “critical region” within 21q22 was 

thought to be responsible for several DS 

phenotypes including craniofacial abnormalities, 

congenital heart defects, clinodactyly of the fifth 

finger, mental retardation and several other features 

(3, 11). 

DS is usually caused by an error in cell 

division named "nondisjunction" that leads to an 

embryo with three copies of chromosome 21. This 

type of DS is called trisomy 21 and accepted to be 

the major cause of DS, accounting for about 95% of 

cases (20, 21). Since the late 1950s, scientists have 

also determined that a smaller number of DS cases 

(nearly 3-4%) are caused by chromosomal 

translocations. Because the translocations 

responsible for DS can be inherited, this form of the 

disease is sometimes named as familial DS. In these 

cases, a segment of chromosome 21 is transferred 

to another chromosome, usually chromosome 14 or 

15. When the translocated chromosome with the 

extra piece of chromosome 21 is inherited together 

with two common copies of chromosome 21, DS 

will occur. For couples who have had one child 

with DS due to translocation trisomy 21, there may 

be an increased likelihood of DS in future 

pregnancies. This is because one of the parents may 

be a balanced carrier of the translocation. The 

chance of passing the translocation depends on the 

sex of the parent who carries the rearranged 

chromosome 21. If the father is the carrier, the risk 

is around 3 percent, while with the mother as the 

carrier, the risk is about 12 percent. This difference 

is due to the fact that it seems to be a selection 

against chromosomal abnormalities in sperm 

production which means men would produce fewer 

sperm with the wrong amount of DNA. 

Translocation and gonadal mosaicism are types of 

DS known to have a hereditary component and one 

third of them (or 1% of all cases of DS) are 

hereditary (1, 22). The third form of disease named 

mosaicism, is a rare form (less than 2% of cases) of 

DS. While similar to simple trisomy 21, the 

difference is that the third copy of chromosome 21 

is present in some, but not all cells. This type of DS 

is caused by abnormal cell division after 

fertilization. In cellular mosaicism, the mixture can 

be seen in different cells of the similar type; while 

with mosaicism, one set of cells may have normal 

chromosomes and another  type  may  have  trisomy 

 
Table 1. Candidate dosage sensitive genes on chromosome 21causing DS phenotype (11, 23, 24) 

Gene Symbol Full Name Location 
APP amyloid beta (A4) precursor protein 21q21.2|21q21.3 
OLIG1 oligodendrocyte transcription factor 1 21q22.11 
OLIG2 oligodendrocyte lineage transcription factor 2 21q22.11 
DYRK1A dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A 21q22.13 
DSCAM Down syndrome cell adhesion molecule 21q22.2 
SYNJ1 synaptojanin 1 21q22.2 
JAM2 junctional adhesion molecule 2 21q21.2 
SIM2 single-minded homolog 2 (Drosophila) 21q22.2|21q22.13 
ERG v-ets avian erythroblastosis virus E26 oncogene homolog 21q22.3 
PTTG1IP pituitary tumor-transforming 1 interacting protein 21q22.3 
ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif 1 21q21.3 
ITSN1 intersectin 1 21q22.1-q22.2 
SYNJ11 synaptojanin 1 21q22.2 
ERG v-ets avian erythroblastosis virus E26 oncogene homolog 21q22.3 
ETS2 ETS proto-oncogene 2, transcription factor 21q22.3 
SLC19A1 solute carrier family 19 member 1 21q22.3 
COL6A1 collagen type VI alpha 1 21q22.3 
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Screening methods 

Screening for DS is an important part of 

routine prenatal care. The most common screening 

method contains the measurement of a combination 

of factors: advanced maternal age, multiple second 

trimester serum markers, and second trimester 

ultrasonography (Table 2) (25-26). 

The first method available for aneuploidy 

screening was maternal age. Advanced maternal 

age predisposes to DS and other fetal chromosomal 

abnormalities based on nondisjunction. In fact, the 

advanced maternal age was defined as age 35 years 

or older at delivery, because her risk of having a 

fetus with aneuploidy was equivalent to or more 

than the estimated risk for pregnancy loss caused by 

an amniocentesis. The extra chromosome 21 is the 

result of nondisjunction throughout meiosis in the 

egg or the sperm (standard trisomy 21) in almost 

95% of individuals (27-29). 

Trisomy 21 is coupled with a propensity for 

brachycephaly, duodenal atresia, cardiac defects, 

mild ventriculomegaly, nasal hypoplasia, echogenic 

bowel, mild hydronephrosis, shortening of the 

femur and sandal gap and clinodactyly or middle 

phalanx hypoplasia of the fifth finger. The first 

reported marker associated with DS was the 

thickening of the neck area (30, 31). 40-50 percent 

of affected fetuses have a thickened nuchal fold 

measuring ≥ 6 mm in the second-trimester (32, 33). 

After using of screening by nuchal translucency 

(NT), about 83% of trisomy 21 pregnancies were 

identified in the first trimester. Later, it was 

revealed that screening by a combination of 

maternal age, NT and bi-test [pregnancy-associated 

plasma protein (PAPP-A) with second trimester 

free β chorionic gonadotropin (β-hCG)] or tri-test 

[alpha-fetoprotein (AFP), estriol and free β-hCG] 

has a potential sensitivity of 94% for a 5% false-

positive rate (34-36). 

NT is a physiological process ‘marker’ in the 

fetus that reflects the fetal lymphatic and vascular 

development in the head and neck area. NT 

measurement was primarily used as a stand-alone 

test for aneuploidy screening. Later, maternal age 

was added, and finally, NT became part of a 

combined first trimester aneuploidy screening test 

(NT, maternal age and the maternal serum markers, 

PAPP-A and β-hCG) (35). 

Pyelectasis which refers to a diameter of the 

renal pelvis measuring ≥ 4 mm, is another second 

trimester marker; in fact, renal dilatation has a 

higher occurrence among fetuses with DS. 

However, pyelectasis remains a minor marker as 

the sensitivity is about 17%-25%, with a false-

positive rate of 2%-3% (37). 

 
Table 2. Detection rates and false positive rates of different Down syndrome screening tests (43, 44) 

Test Markers of aneuploidy Trimester DR (%) FPR (%) 

NT alone NT 1st 64-70 5 

Combined NT+ PAPP-A + β-hCG 1st 65 5 

Triple screen β-hCG + AFP + estriol 2nd 70 14 

Quad screen β-hCG + AFP + estriol+ inhibinA 2nd 81 7 

Serum Integrated β-hCG +AFP +estriol+ inhibinA + PAPP-A 1st and 2nd 85-88 5 

Integrated NT + β-hCG + AFP + estriol+ inhibinA + PAPP-A 1st and 2nd 94-96 1 

Sequential NT + β-hCG +AFP + estriol+ inhibinA + PAPP-A 1st and 2nd 95 2 
DR: detection rate; FPR: false-positive rate; NT: nuchal translucency; PAPP-A: pregnancy-associated plasma protein- A; β-hCG: chorionic 
gonadotropin; AFP: alpha-fetoprotein.  
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Another important soft marker that has been 

effectively combined into fetal abnormality 

screening is the nasal bone. The absence of nasal 

bone in fetus at the 11-14 weeks scan is related to 

DS. This marker, initially, was found in 73% of 

trisomy 21 fetuses and in only 0.5% of 

chromosomally normal fetuses (38, 39) and, 

subsequently, it was estimated that the combination 

of maternal age, NT, maternal serum biochemical 

screening (by bi- test or tri- test) and examination 

of nasal bone could increase the detection rate to 

97% (40). After the completion of further 

confirmation studies, it is generally accepted that 

fetal nasal bone is a worthy sonographic marker, 

even if there are racial differences in the length of 

this bone (41- 42). 

Noninvasive prenatal screening (NIPS) 

One of the major innovations in obstetrical 

care was the introduction of prenatal genetic 

diagnosis, primarily by amniocentesis in the second 

trimester of pregnancy. Later, chorionic villus 

sampling during the first trimester allowed for 

earlier diagnosis. However, the potential risk of 

fetal loss due to an invasive procedure has urged 

the search for noninvasive approaches for genetic 

screening and diagnosis (45). More recent advances 

in genomics and related technologies have resulted 

in the development of a noninvasive prenatal 

screening (NIPS) test using cell-free fetal DNA 

sequences isolated from a maternal blood sample. 

Almost 4-10% of DNA in maternal serum is of fetal 

origin. Fetal trisomy detection by cfDNA from 

maternal blood has been done using massively 

parallel shotgun sequencing (MPSS). By next 

generation sequencing platforms, millions of 

amplified genetic fragments can be sequenced in 

parallel. MPSS detects higher relative amounts of 

DNA in maternal plasma from the fetal trisomic 

chromosome compared with reference chromo-

somes. Platforms differ according to whether 

amplified regions throughout the genome, 

chromosome-specific regions, or single nucleotide 

polymorphisms (SNPs) are the targets for 

sequencing (1, 45, 46). 

Another approach named digital analysis of 

selected regions (DANSR) selectively sequences 

loci only from target chromosomes by including a 

targeted amplification step. This method represents 

a considerable increase in sequencing efficiency. 

Recently, a new method has described selectively 

the sequences SNPs and ascertain copy number by 

comparing fetal to maternal SNP ratios between 

target and reference chromosomes. The use of 

SNPs may alleviate chromosome- to -chromosome 

amplification variability; however, the need for a 

reference chromosome partly negates this 

advantage (47-50). 

Although studies are hopeful and exhibit high 

sensitivity and specificity with low false- positive 

rates, there are drawbacks to NIPS. Specificity and 

sensitivity are not consistent for all chromosomes; 

this is due to different content of cytosine and 

guanine nucleotide pairs. False- positive screening 

results take place and because the sequences 

derived from NIPS are derived from the placenta, 

like in chorionic villus sampling (CVS), they may 

not reflect the true fetal karyotype. Therefore, 

currently invasive testing is recommended for 

confirmation of a positive screening test and should 

remain an option for patients seeking a definitive 

diagnosis (35, 45, 51). 

NIPS for fetal aneuploidy was presented into 

clinical practice in November 2011. Obstetricians 

have rapidly accepted this testing, and patients have 

welcomed this option due to its lack of fetal 

morbidity and mortality (52). At first, NIPS began 

as a screen for only trisomy 21 (T21) and was 

rapidly developed to include other common 

aneuploidies for chromosomes 13 (T13), 18 (T18), 

X, and Y (53).  
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Table 3. Detection rates and false positive rates of major aneuploidies using NIPT (51, 57, 58) 

Chromosome Detection rate (%) 95 % CI False positive rate (%) 95 % CI 

Trisomy 21 99.2 (98.5–99.6) 0.09 (0.05–0.14) 
Trisomy 18 96.3 (94.3–97.9) 0.13 (0.07–0.20) 
Trisomy 13 91.0 (85–95.6) 0.13 (0.05–0.26) 
Monosomy X 90.3 (85.7–94.2) 0.23 (0.14–0.34) 
CI: confidence interval. 

 

Notwithstanding improvement in sensitivity, 

approaches using cfDNA are not diagnostic tests as 

false positive and false negative results are still 

generated, although at very low rates than the 

previous maternal screening tests. A significant 

source of a discrepant result comes from the fact 

that the fetal fraction of cfDNA originates pre-

dominantly from apoptosis of the trophoblast layer 

of the chorionic villi and not the fetus.  Thus, inva-

sive diagnostic testing such as CVS or amnio-

centesis, is recommended after a positive cfDNA 

fetal aneuploidy screening test. Because cfDNA 

testing is normally presented in the first trimester, 

CVS is often the choice invasive method applied. If 

mosaicism is recognized on CVS, confirmatory 

amniocentesis is recommended (54-56). 

Although NIPS is not a diagnostic test, it 

offers a considerably developed screen for fetal 

aneuploidy compared to the earlier screening tests 

that depend on maternal serum markers (Table3). 

Patients with positive screen results should take 

suitable genetic counseling to persuade that follow-

up testing is necessary before making a decision as 

to whether or not to continue a pregnancy because 

of concern over a positive NIPS result. However, 

patients with negative test results need to know that 

there is still a chance that their fetus may have a 

chromosome abnormality due to a false negative 

result (52). 

Diagnostic methods 

Amniocentesis is the most conventional 

invasive prenatal diagnostic method accepted in the 

world. Amniocenteses are mostly performed to 

acquire amniotic fluid for karyotyping from 15 

weeks onwards. Amniocentesis performed before 

15 weeks of pregnancy is referred to as early 

amniocentesis. CVS is usually performed between 

11 and 13 (13+6) weeks of gestation and includes 

aspiration or biopsy of placental villi. 

Amniocentesis and CVS are quite reliable but 

increase the risk of miscarriage up to 0.5 to 1% 

compared with the background risk (59-60). 

Treatment 

There is no medical cure for DS. However, 

children with DS would benefit from early medical 

support and developmental interventions initiation 

during childhood. Children with DS may benefit 

from speech therapy, physical therapy and work-

related therapy. They may receive special education 

and assistance in school. Life expectancy for people 

with DS has improved noticeably in recent decades 

(61). Nowadays, cardiac surgery, vaccinations, 

antibiotics, thyroid hormones, leukemia therapies, 

and anticonvulsive drugs (e.g, vigabatrin) have 

significantly improved the quality of life of 

individuals with DS. Actually, life expectancy that 

was hardly 30 years in the 1960s is now increasing 

more than 60 years of age (3, 62-63). 

X inactivation is the mammalian dosage 

compensation mechanism that ensures that all cells 

in males and females have one active X chromoso-

me (Xa) for a diploid set of autosomes. This is 

achieved by silencing one of the two X chromoso-

mes in female cells. The X chromosome silencing is 

effected by Xist non-coding RNA and is associated 

with chromatin modification (64). Recently, resear-

chers have applied this model of transcriptional 

silencing to the problem of additional gene expre-

ssion in DS. In induced pluripotent stem (iPS) cells 

derived from a patient with DS, the researchers 
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used zinc-finger nucleases to insert inducible X 

inactive specific transcript (non–protein-encoding) 

(XIST) into chromosome 21. The mechanism of 

transcriptional silencing due to the Xist transgene 

appears to involve covering chromosome 21 with 

Xist RNA that results in stable modification of 

heterochromatin. In the iPS cells, induction of the 

newly inserted transgene resulted in expression of 

XIST noncoding RNA that coated chromosome 21 

and triggered chromosome inactivation (65-66). 

Conclusion 

In summary, DS is a birth defect with huge 

medical and social costs and at this time there is no 

medical cure for DS. So, it is necessary to screen all 

pregnant women for DS. NIPS for fetal aneuploidy 

which was presented into clinical practice since 

November 2011 has not been yet considered as 

diagnostic test as false positive and false negative 

test results are still generated. Thus, invasive 

diagnostic testing such as CVS or amniocentesis, is 

recommended after a positive cfDNA fetal 

aneuploidy screening test. 

The described performance of screening for 

trisomy 21 by the cffDNA test, with a diagnostic 

rate of more than 99% and false positive rate less 

than 0.1%, is preferable to other screening methods. 

Despite the test is obtaining common acceptability, 

the high cost restricts its application to all patients, 

identified as such by another traditional first-line 

method of screening. In the screening with cffDNA 

testing, the nuchal scan is considered to be the most 

appropriate first-line method of screening.  
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