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Peripheral nerve regeneration is a complicated phenomenon. Thyroid hormones are known as critical 

regulators in the nervous system development. The Schwann cells have the regenerative potency in the 

peripheral nervous system. In this study, the human adipose-derived stem cells were assessed in vitro, 

for transdifferentiation potency into Shwann-like cells (SLCs) as a candidate source for clinical cell 

therapy, under the treatment of triiodothyronine (T3) hormone, and compared with the untreated cells. 

The cell viability rate, myelination and neurotrophic factors expression of SLCs were evaluated two 

weeks post- induction by MTT assay, immunocytochemistry and real-time RT-PCR techniques, 

respectively. The obtained results revealed a significant decrease in SLCs viability, compared to the 

adipose-derived stem cells (P < 0.001). Immunocytochemistry technique was applied to detect SLCs 

markers, such as S100β, GFAP and myelin basic proteins (MBP) in the presence and absence of T3 

treatment. The results indicated that administering T3 can significantly increase the differentiation and 

myelination potency of SLCs (P < 0.01). The findings of real-time RT-PCR technique indicated that 

the expression of Schwann cells markers, MBP, brain-derived neurotrophic factor and glial cell-derived 

neurotrophic factor were upregulated significantly with T3 hormone administration in comparison with 

the untreated cells (P < 0.05). The SLCs were able to express the neurotrophic factors and myelination 

related genes in the presence of T3 hormone. Furthermore, T3 administration improved myelination 

potency of adipose-derived stem cells, in vitro. Further in vivo experiments are necessary to confirm 

the advantages of using a combination of autologous SLCs and T3 hormone for peripheral nerve injury 

recovery. 
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Introduction 

Nerve injury in human is usually accompanied by long-term deficiencies. Applying cell-based therapy 

to repair nerve injury is one of the treatment strategies. Also, a combination of a variety of cellular and 

molecular components could be applied for nerve regeneration. 

Schwann cells (SCs) constitute the main contributing non-neuronal cells, in the peripheral nervous 

system. The significance of SCs in cell therapies for nerve injury repair is subject to their myelinating ability, 

neurotrophic factors (NTFs) synthesis, expression of cell adhesion molecules and extracellular matrix 

(ECM) (1). Consequently, SCs are believed to exert a regenerative influence during nerve injury and 

neurodegenerative disease (2, 3). However, the slow expansion rate and the difficulties in harvesting have 

limited the application of SCs for cell transplantation (4). 

Mesenchymal stem cells are the promising candidate stem cells in regenerative medicine. Adipose-

derived stem cells (ADSCs) are a type of adult stem cells, which can be easily obtained through low-invasive 

protocols. ADSCs are abundant source of adult stem cells, have lower immunogenicity, show long-term 

survival, and are able to differentiate into different cell lineages (5). The microenvironment of ADSCs is 

very important, as various factors are involved in differentiation potency. Adding some agents like growth 

factors, antioxidants, cytokines and extracellular components, are required for ADSCs induction into 

differentiated ADSCs (dADSCs) (6-8). ADSCs can be differentiated into Shwann–like cells (SLCs) with 

similar SCs properties (9, 10). After peripheral nerve injury, several factors are required for nerve 

regeneration, including ECM, neurotrophic factors, and hormones (11). 

ECM is very important for SCs function, and consists of specialized macromolecules and proteins, 

including fibronectin and laminin. These glycoproteins are critical for SCs proliferation, differentiation, 

survival, and SC morphology regulation (12, 13). 

Neurotrophic factors are proteins with high contribution in enhancing neurogenesis during peripheral 

nerves development and repair  (14). Some of the most important neurotrophic factors produced by SCs 

consist of the brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), glial cell-

derived neurotrophic factor (GDNF), and nerve growth factor (NGF). ADSCs can produce neurotrophic 

factors  and induce peripheral nerve regeneration without being differentiated into SLCs (15, 16). The 

dhADSCs transplant improved survival and myelin formation in comparison with undifferentiated hADSCs 

transplant. Moreover, hADSCs induced into SLCs, were able to produce neurotrophic factors more than that 

of the undifferentiated hADSCs (17). In the presence of laminin, the hADSCs produce more neurotrophic 

factors during differentiation into SLCs, which promote myelination in vitro (18). 

Thyroid hormones are essential for development and maturation of the brain and normal brain function 

throughout  life, as well as for peripheral nerve development (11). Also, THs influence the expression of 

myelin proteins: proteolipid protein (PLP), myelin basic protein (MBP) and myelin- associated glycoprotein 

(MAG) (19). Moreover, THs were shown to promote in vitro differentiation and maturation of 

oligodendrocyte precursors, induced from rat neural stem cells (20). 

HADSCs are multipotent adult stem cells, capable of being induced in a variety of differentiated cells 

such as adipocytes, chondrocytes, osteocytes and neural cells upon induction by THs (21, 22). On the other 

hand, IL12P80 (homodimer of interleukin-12 subunit p40) could replace or have a  synergistic effect with 
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ciliary neurotrophic factor (CNTF) and triiodothyronine (T3) hormone to induce neural stem cells  into 

myelinating SCs, which in turn promote nerve regeneration (23). 

The purpose of this study was to evaluate the in vitro efficacy of T3hormone on hADSCs differentiation 

into SLCs, together with myelination potency and neurotrophic factors expression, in SLCs cells. 

Materials and Methods 

Experimental design 

In order to assess the effects of T3 on transdifferentiation of hADSCs into SLCs, human adipose tissue 

was obtained from subcutaneous abdominal fat. After that, hADSCs (3-4 passages) were affected by neural 

induction medium containing T3, and induction medium without T3 considered as a control group. To 

evaluate the effect of T3, on SLCs differentiation of hADSCs, qRT-PCR analysis of neural marker genes 

(glial fibrillary acidic protein (GFAP), S100 calcium binding protein B (S-100β), MBP, BDNF, GDNF, 

NGF, CNTF) was carried out for treated and untreated induced cells and also, GFAP, MBP and S-100β were 

evaluated at 2 week post-induction of hADSCs with immunocytochemistry assay (Figure 1). 

Human ADSCs isolation and culture 

In this experimental study, all protocols were approved by the Ethics Committee Supervising Procedures 

at Isfahan University of Medical Sciences, Isfahan, Iran. The human adipose tissue was obtained from 

subcutaneous abdominal fat of four female donors, with an age range of 2547 years after receiving 

informed consent.  

First, the subject tissue samples were rinsed by phosphate-buffered saline (PBS), containing 2% 

penicillin/streptomycin (P/S), followed by removal of connective tissue and blood vessels from fat tissue. 

Afterwards, the chemical digestion was performed in 0.01 % collagenase type І (Sigma-Aldrich, St.Louis, 

MO, USA) solution for 30 min at 37 °C in 5 % CO2. Next, the enzymatic digestion was neutralized by 

adding DMEM: F12 (1:1), supplemented with 10 % fetal bovine serum (FBS), and centrifuged for 10 min 

at 1700 rpm. The cell pellet was re-suspended by medium and then plated in T25 plastic flasks, containing 

DMEM: F12 medium 10 % FBS and 1% P/S. Then, the flasks were incubated in a humidified tissue culture 

incubator, with 5 % CO2 at 37 °C. 

After 24 h, the non-adherent cells were discarded, while the attached cells were expanded. The ADSCs 

were harvested, using 0.25% trypsin/EDTA (Gibco, BRL, Paisley, UK) for 3 min at 37 °C to obtain a single 

cell suspension, and replated through the serial passage to generate a homogenous cell population. In this 

experiment, cells were used after 3-4 passages. 

Human ADSCs differentiated into Schwann-like cells 

The hADSCs stemness was confirmed by flow cytometry and the in vitro differentiation of hADSCs into 

SLCs was carried out according to the previous study (8). This differentiation was performed in two steps, 

including induction of hADSCs to the neurosphere where hADSCs were plated in plastic tissue culture 

plates in a DMEM: F12 (1:1) medium, supplemented with 20 ng/mL human epidermal growth factor (hEGF) 

(Sigma-Aldrich, St.Louis, MO, USA) , 20 ng/mL human basic fibroblast growth factor (bFGF) (Sigma- 

Aldrich, St.Louis, MO, USA), and 2% B27. The medium was refreshed every 2-3 days. After seven days of 

plating, the neurospheres were dissociated with pipetting via 0.25% trypsin/EDTA. 
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Fig. 1. Schematic illustration of the procedure used to assess the effects of T3 on transdifferentiation of hADSCs into Schwann-like 

Cells. 

The single cells were replated in the presence of terminal differentiation DMEM: F12 /10 % FBS medium 

supplemented with 5 μm forskolin (Sigma-Aldrich, St.Louis, MO, USA), 5 ng/mL platelet-derived growth 

factor-AA (PDGF) (Sigma-Aldrich, St.Louis, MO, USA), 10 ng/mL bFGF (Sigma-Aldrich, St.Louis, MO, 

USA), and 200 ng/mL recombinant human heregulin-beta (Sigma-Aldrich, St.Louis, MO, USA) for seven 
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days. In this step, T3 with 50 nM concentration was added to cell culture flask in treated group (+T3), but 

not to the control group (-T3). 

MTT assay 

The cell viability of SLCs was determined using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium 

bromide (MTT assay), in the presence or absence of T3 hormone, post induction. After cell counting, 4× 

103 cells were plated in each well of a 24-well plate. After 7 days, the differentiated cells were washed with 

PBS, then 5 mg/mL MTT solution was added to the DMEM: F12 medium, at 1:10 dilution, and incubated 

with 5% CO2 at 37 °C for 4 h. After discarding this medium, the formazan crystals were dissolved by adding 

400 μL DMSO solution, until purple color was observed in each well through pipetting. The absorbance 

was detected by a micro plate reader (Hiperion MRP 4+, Germany) at 540 nm wavelength. The absorbance 

values were related to the number of living cells. 

Immunocytochemistry analysis 

To determine the effect of T3 hormone on the differentiation potency of SLCs, the expression of some 

markers, GFAP and S100β SCs markers were evaluated. Also, myelinating ability was assessed through 

assessing MBP marker by immunocytochemistry. The differentiated cells were fixed in 4% 

paraformaldehyde for 20 min at room temperature (RT), permeabilized with 0.2 % Triton x-100 in PBS for 

30 min at RT, followed by incubation with primary antibodies, overnight at RT [anti- S-100β (1:500, 

Abcam, UK), (anti- GFAP, 1:300, Abcam, UK) and (anti- MBP, 1:500, Abcam, UK)]. 

Afterward, the samples were rinsed and incubated with conjugated secondary antibody, rabbit anti-

mouse FITC (1:500, Abcam, UK), and rabbit anti-mouse PE (1:1000, Abcam, UK) at RT for 60 min. Then, 

DAPI solution (1:1000, Sigma) was added for labeling the nuclei. Experiments were performed in triplicate, 

fluorescence images were captured by fluorescence microscope (Olympus BX51, Japan). The images were 

analyzed, using the Image J software, the number of immunopositive cells were counted in several non-

overlap fields, and a minimum of 200 cells per slide were determined. 

Real-time reverse transcription polymerase chain reaction (Real time RT-PCR) 

The gene expression was evaluated, using the real-time reverse transcription polymerase chain reaction 

(RT-PCR) technique (24). The total RNA was extracted from SLCs, using the High Pure RNA isolation kit 

(Roche, Germany), according to the manufacturer’s protocol. The RNA was assessed by spectrophotometric 

analysis using a Nanodrop (Nano spec cube, Nanolytic, Germany). The extracted RNA from each sample 

was reversely transcribed with DNase І (Roche, Germany), to eliminate genomic contamination. Isolated 

RNA was converted into complementary DNA (cDNA), using the Revert Aid First Strand cDNA Synthesis 

Kit (Thermo Scientific, USA) and oligo dT primer. The primers for all assessed genes were designed using 

Allele ID 7.6 (Primer Biosoft). All primers’ sequences (forward-reverse) and real-time RT-PCR program 

were presented in (Table 1). After DNA amplification, real-time RT-PCR was run via gene specific primers, 

Maxima SYBR Green/ROX qPCR Master Mix 2X (Thermo Scientific, USA) and the Steponeplus™ real-

time RT-PCR detection system (Applied Biosystems, USA). To verify the specificity of reaction, a melting 

curve analysis was used to determine the melting temperature. The genes were normalized against the 

housekeeping gene, GAPDH. These experiments were run in triplicates. The 2−ΔΔCT method was adopted to 

determine the level of relative expression for each gene. 

 [
 D

O
I:

 1
0.

22
08

8/
IJ

M
C

M
.B

U
M

S.
11

.1
.4

1 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
cm

ed
.o

rg
 o

n 
20

25
-0

7-
12

 ]
 

                             5 / 14

http://dx.doi.org/10.22088/IJMCM.BUMS.11.1.41
https://ijmcmed.org/article-1-1692-en.html


Effect of T3 hormone on stem cells transdifferentiation / Zarinfard G, et al                                                                                     46 

International Journal of Molecular and Cellular Medicine. 2022; 11(1): 41-54 

 

Table 1. Primer sequences (forward, reverse) used in RT-PCR analysis. 

Gene 

Symbol 

Description Function* Sequence (5`to 3`) Accession No. 

GFAP Glial Fibrillary 

Acidic Protein 

Intermediate filament (IF) protein, 

structural molecule activity and structural 

constituent of cytoskeleton, as a marker to 

distinguish astrocytes from other glial cells. 

CCGACAGCAGGTCCATGTG 

GTTGCTGGACGCCATTGC 

NM_001131019 

S-100β S100 Calcium 

Binding Protein 

B 

Regulation of a number of cellular 

processes such as cell cycle progression and 

differentiation. 

GGAGACGGCGAATGTGACTT    

ACTCGTGGCAGGCAGTAGTAA 

NM_006272 

MBP Myelin Basic 

Protein 

Major constituent of the myelin sheath of 

oligodendrocytes and Schwann cells in the 

nervous system. 

GGCCCCGTGGATGGA    

GAGGCGCGAAAGGAGATG 

NM_001025090 

BDNF Brain Derived 

Neurotrophic 

Factor 

Promotes neuronal survival in the adult 

brain. This gene may play a role in the 

regulation of the stress response and in the 

biology of mood disorders. 

AGCTCCGGGTTGGTATACTGG  

CCTGGTGGAACTTCTTTGCG 

NM_170734 

GDNF Glial Cell 

Derived 

Neurotrophic 

Factor 

To promote the survival and differentiation 

of dopaminergic neurons in culture, and 

was able to prevent apoptosis of motor 

neurons induced by axotomy. 

TCAAATATGCCAGAGGATTAT

CCTG 

GCCATTTGTTTATCTGGTGAC

CTT 

NM_199231 

NGF Nerve Growth 

Factor 

Nerve growth stimulating activity and 

regulation of growth and the differentiation 

of sympathetic and certain sensory neurons. 

CATGCTGGACCCAAGCTCA    

GACATTACGCTATGCACCTCA

GTG 

NM_002506 

CNTF Ciliary 

Neuronotrophic 

Factor 

Survival factor for neurons and 

oligodendrocytes and may be relevant in 

reducing tissue destruction during 

inflammatory attacks. 

CCTGACTGCTCTTACGGAATC

CTAT  

CCATCCGCAGAGTCCAG 

NM_000614 

GAPDH Glyceraldehyde-

3-Phosphate 

Dehydrogenase 

Catalyzes an important energy-yielding 

step in carbohydrate metabolism. 

GAAATCCCATCACCATCTTCC

AGG 

GAGCCCCAGC CTTCTCCATG 

NM_002046 

*: Gene functions were adopted from GeneCards®: The Human Gene Database 

 

Statistical analysis 

The statistical analysis of data was performed using SPSS software version 20. All the data in different 

groups were compared through ANOVA, followed by Tukey, s post hoc test. The data were presented as 

the mean value ± standard error (mean ± SEM) and the levels of the statistical significance were expressed 

as P-values (*P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001). 

Results 

Cell culture and change in morphology of isolated hADSCs 

By seeding ADSCs into cell culture flask, many cells were attached to the bottom. After 2-3 passages, 

the isolated ADSCs were found as a homogenous population with typical flattened fibroblast-like 

morphology (Figure 2A). 
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Fig. 2. Morphological characteristics and differentiation of human ADSCs by inverted phase contrast microscopy. A: h 

ADSCs adhering to tissue culture plastic flask showing fibroblast - like morphology; B: Neurospheres formation in tissue culture 

dish, seven days post-induction (step one). The final differentiation into an elongated spindle or triangular shape typical of SCs 

(dADSCs), two weeks post-induction (step two); C:  Cell differentiation upon treatment with T3 hormone; D: Control without T3 

hormone treatment. Scale bars in A= 200 μm; B = 150 μm; C and D = 100 μm. 

Morphological changes following SLCs differentiation 

The gradual changes in cell morphology in all stages were observed, using phase contrast microscopy. 

HADSCs were induced to neurosphere structures by re-plating in pre-induction medium, where after seven 

days clumps of floating cells were observed, as shown in (Figure 2B). 

The neurospheres were detached from the substrate, dissociated, and then the final differentiation was 

performed, with or without T3 hormone. The differentiated cells with a spindle-like or triangular shape 

morphology were shown in Figure 2C and D. 

Evaluation of the Cell viability 

The effect of T3 hormone in promoting cell viability of SC-like cells was assessed through MTT assay. 

The mean absorbance of stem cells, T3- treated and untreated groups were 0.509 ± 0.048, 0.265 ± 0.040 and 

0.210 ± 0.014, respectively. Our results showed that the mean of cell viability of the stem cell group was 

significantly more than the differentiated cell groups (***p≤ 0.000), while no significant difference was 

found in the mean of cell viability between T3- treated SC-like cells, compared to the untreated group.  

Immunofluorescence analysis 

HADSCs were induced into SLCs, and to determine the effect of T3 on cell induction, 

immunocytochemical staining was performed using Schwann cell markers (S100β, GFAP) and myelin basic 

protein (MBP), two weeks after induction. The expression of these markers was illustrated in two groups 

(Figure 3 and Figure 4). 
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Fig. 3. Immunocytochemical staining of SLCs, post-induction and after treatment of hADSCs. A: In the presence of T3 

hormone; B: In the absence of T3 hormone. Specific SCs markers were used. S100β (green), GFAP (red) and (S100β/GFAP co-

markers, yellow to brown). The yellow to brown color was an overlap of green and red, showing positively stained cells for each 

marker, in each experiment the nuclei were counterstained with DAPI (blue). Scale bars= 100 μm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Immunocytochemical staining of SLCs, post-induction and after treatment of hADSCs. A: In the presence of T3 

hormone; B: In the absence of T3 hormone. Specific SCs markers were used. S100β (green), myelinating marker MBP (red) and 

S100β/MBP co-markers, yellow to brown). The yellow to brown color was an overlap of green and red, showing positively stained 

cells for each marker, in each experiment the nuclei were counterstained with DAPI (blue). Scale bars= 100 μm. 

Immunofluorescence analysis revealed that the mean percentage of co-markers, S100β/GFAP positive 

cells increased significantly in the T3- treated group (75.50 ± 3.24%) in comparison with the untreated group 
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(61.46 ± 4.55 %) (*P < 0.05). The mean percentage of differentiated cells expression of co-markers, S-

100β/MBP in the T3- treated group was higher (50.87 ± 2.16 %) in comparison with the untreated group 

(47.75 ± 5.35 %); however, this increase was not significant (Figure 5 A). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Comparative analysis of the mean percentages of immunopositive cells for SCs and myelinating markers. A: There 

was a significant increase in SCs markers S100β/ GFAP, in the presence of T3 hormone, compared to the untreated group (mean ± 

SEM, *P < 0.05); B: Real- time RT-PCR results  were used to reveal the changes in gene expression for SCs markers (S100β, 

GFAP) and MBP. The expression of GFAP was significantly increased in the treated cells (mean ± SEM, ***P < 0.001). Similarly, 

T3-treated cells showed a significant increase in MBP expression, compared to the untreated cells (mean ± SEM, **P < 0.01) in 

SLCs derived from human ADSCs in T3- treated and untreated conditions. 

Real-time RT-PCR analysis 

To confirm the level of gene expression in SLCs, real-time RT-PCR was applied two weeks post-

induction to determine the effects of T3 hormone on cell differentiation, myelinating potency and the 

expression of neurotrophic factors, such as BDNF, NGF, CNTF, and GDNF in SLCs. The genes were 

normalized with GAPDH, followed by assessing the levels of gene expression of some markers in T3-treated 

and untreated groups. 

Although, the S100β gene expression was up regulated in T3- treated group (2.21± 0.30), compared to 

the untreated group (1.72 ± 0.176), this up regulation was not significant. A significant up regulation for 

GFAP was observed in T3-treated group (2.96 ± 0.34), compared to the untreated group (1.47 ± 0.191) (P 

< 0.001). The myelination potential of SLCs was determined, where MBP expression in the T3- treated 

group (5.93± 1.44) was significantly higher than its counterpart (2.04 ± 0.23) (P < 0.01) (Figure 5 B). 

The BDNF and GDNF expressions were up regulated with T3 hormone treatment; the expression of 

BDNF in the T3- treated group was significantly up regulated (4.34 ± 1.30), in comparison with the untreated 

group (1.61 ± 0.178) (P < 0.05). Here, the results indicate that the GDNF expression was significantly up 

regulated in the T3- treated group (5.53 ± 0.57), in comparison with its counterpart (1.45 ± 0.28) (P < 0. 

001). 

Our findings indicate that the NGF expression was down regulated in the T3- treated group (0.49 ± 

0.063), and in untreated group (0.59 ± 0.075), compared to the undifferentiated cells. In contrast, the CNTF 
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expression was up regulated, in the treated group (3.25 ± 1.56), compared to the untreated group (2.57 ± 

.097); however, the mean difference of CNTF between the two groups was not significant (Figure 6). 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Gene expression analysis of neurotrophic factors. Real-time RT-PCR analysis was used to reveal the changes in gene 

expression for neurotrophic factors such as BDNF, NGF, CNTF and GDNF markers in SLCs derived from human ADSCs in T3 - 

treated and untreated conditions. The expression of BDNF and GDNF was significantly upregulated in SLCs in the treated cells, 

compared to the untreated control (mean ± SEM, *P < 0.05, ***P < 0.001). 

Discussion 

Several factors are necessary for an appropriate neuronal function, such as SCs, extracellular matrix, 

neurotrophic factors and hormones. It has been reported that the T3 hormone can immediately effect on 

both the axotomized neurons and SCs, in transected rat sciatic nerve, which may display an important role 

for T3 hormone in nerve regeneration (25). in addition, it has been suggested that  the treatment of impaired 

peripheral nerves with biodegradable guides, in the presence of T3 leads to an increase in the number of 

axons and myelin sheath thickness and also a refined regeneration of the sciatic nerve (26). Thyroid 

hormones exert their function through nuclear thyroid receptors (TRs). Vertebrates have two TR subtypes, 

the TRα and TRβ, which are homologous and ligand dependent. A wide range of mammalian TRs exists, 

but only TRα1, TRβ1 and TRβ2 isoform can be transcribed actively (27). 

In the nervous system, expression pattern of TRs depends on the region and type of neural cell as well 

as the developmental stage (28). TRs in neurons and glial cells of central nervous system are predominantly 

expressed during embryonic and adult life, whereas, in glial cells of peripheral nervous system like SCs, 

expression of TRs is limited to periods of development and repair. The nuclei of SCs do not express TRs in 

young and adult rats (29).   While TRβ-1 is distributed all over the gray matter of the central nervous system, 

TRα-1 is the predominant isoform in SCs; the expression of which is established during the sciatic nerve 

development, TRα-1 isoform is inactivated during myelination process and can no longer be detected (30). 

It has been reported that after transection of the sciatic nerve, SCs are able to express TRα-1 isoform, binding 

of T3 to TRα-1 may regulate the proliferation of SCs and the expression of molecules, inducing myelin-

related proteins, following nerve injuries.  The TR subtype switches from TRα to TRβ in the nervous system; 

cell proliferation is stimulated by TRα while, the migration and differentiation are induced by TRβ (29).  

Moreover, in sciatic nerve cell cultures, SCs remarkably express mainly TRα-1. The TRα presents 

predominantly in multipotent human ADSCs, where TRα-1 regulates cell cycle- associated processes, while, 

TRβ is involved in hADSCs differentiation processes (31). 
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In the present study, we have evaluated the cell survival, using MTT assay. Based on our findings, cell 

viability in SLCs decreases, compared to the hADSCs. ADSCs differentiated into SLCs in a time-dependent 

manner, many of the ADSCs underwent apoptosis and failed to differentiate into SLCs. The cell viability in 

differentiated groups decreased gradually with induction time, compared to the undifferentiated group 

(ADSCs) (32). Previous reports could be assigned to the developmental stages and an exchange from TRα 

expression to TRβ expression stage, in other words, a switch between proliferation and differentiation (31). 

Moreover, it has been reported that T3 treatment during hADSCs  neural induction, suggests that the cell 

viability rate of differentiated cells, in the treated group was significantly more than the untreated  group 

(33). In addition, we observed higher cell viability in T3-treated SLCs, in comparison with the untreated 

group, but the difference was not statically significant. 

Immunocytochemical method was performed for the detection of S100 and GFAP proteins as markers 

of SCs and MBP for myelinating potency. GFAP is an important intermediate filament protein in glial cells, 

astrocytes in the central nervous system, and SCs in peripheral nervous system. The GFAP is expressed in 

immature SCs but later on it will be suppressed, when SCs produces myelin (34).  Therefore, in 

differentiated myelin-forming SCs, GFAP has low expression, but this ability is maintained in SCs. Another 

report suggests that at axotomized condition, SCs return into non-myelin-forming SCs with a potential to 

express GFAP (35). According to our results, administration of T3 hormone, significantly promoted co-

expression of S100 and GFAP, in comparison with the untreated group. However, the immunocytochemistry 

analysis showed that the MBP expression did not significantly increase between the two groups. Therefore, 

the myelinating potency of SLCs increased at a non-significant rate in T3- treated group, compared to the 

untreated groups. 

In addition, real-time RT-PCR analysis was performed to detect SCs markers and MBP at the mRNA 

level; the results of our experiment indicated a significant upregulation in the expression of GFAP and MBP, 

following SLCs induction in the presence of T3 hormone in comparison with the untreated group. That 

could be an indicator of the role of T3 hormone in promoting SLCs differentiation. Moreover, a previous 

study reported that myelin-related genes such as MBP were direct T3-responsive genes (36).  

Furthermore, the neurotrophic expressions were evaluated. Neurotrophins constitute the main factors 

that are able to support neuronal survival and other cells in the nervous system. Neurotrophins such as 

BDNF, NT-3, NT-4 and GDNF are important for cell survival and neurite outgrowth, in particular during 

development, but they are down-regulated in differentiated neural cells (37). The expression of BDNF and 

NT-3 are thyroid hormone- dependent. It has been reported that in hypothyroidism, the level of BDNF 

expression decreases (38). During the injuries of the adult nervous system, BDNF levels decrease in central 

nervous system and peripheral nervous system, while the use of thyroid hormones after injury becomes 

critical for BDNF up regulation (39).  

Our real-time RT-PCR results demonstrated a significant up regulation of BDNF and GDNF expression, 

by evaluating the neurotrophic factors following treatment with T3 hormone, compared to its counterpart, 

while the up regulation of CNTF was not statistically significant between the two groups. In addition, the 

NGF expression was down regulated in the presence and absence of T3 hormone. 
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It has been shown that the expression of BDNF is low until day 3 after lesion, and then gradually reaches 

its maximum rate in 34 weeks. On the contrary, the NGF expression increases to a maximum level rapidly, 

24 h after injury and it reaches its maximum rate up to day 3, and then follows a degradation pattern (32).  

In this context, different culture conditions and discrepancies in media collection, in different time intervals 

may affect these results. 

The main objective of this experiment was to evaluate the effects of T3 hormone on SLCs differentiation, 

using a human autologous source of ADSCs. Based on our findings, T3 administration improves 

myelination potency of dADSCs, in vitro. We also assessed the expression of neurotrophic factors during 

this differentiation process. Based on our results, the expression of some neurotrophic factors increased in 

SLCs during treatment with T3. However, further in vivo experiments are necessary to confirm the 

advantages of using a combination of autologous SLCs and T3 hormone transplantation, in accelerating the 

recovery of peripheral nerve injuries and neurodegenerative disorders. 
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