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Genetic variations found in the coding and non-coding regions of a geneare known to influence the structure as
well as the function of proteins. Serine palmitoyltransferase long chain subunit 1 a member of a-oxoamine
synthase family is encoded by SPTLC1 gene which is a subunit of enzyme serine palmitoyltransferase (SPT).
Mutations in SPTLC1 have been associated with hereditary sensory and autonomic neuropathy type | (HSAN-I).
The exact mechanism through which these mutations elicit protein phenotype changes in terms of structure,
stability and interaction with other molecules is unknown. Thus, we aimed to perform a comprehensive
computational analysis of single nucleotide polymorphisms (SNPs) of SPTLC1 to prioritize a list of potential
deleterious SNPs and to investigate the protein phenotype change due to functional polymorphisms. In this
study, a diverse set of SPTLC1 SNPs were collected and scrutinized to categorize the potential deleterious
variants. Our study concordantly identified 21 non- synonymous SNPs as pathogenic and deleterious that might
induce alterations in protein structure, flexibility and stability. Moreover, evaluation of frameshift, 3’ and 5’
UTR variants shows c.*1302T> Gas effective. This comprehensive in silico analysis of systematically
characterized list of potential deleterious variants could open avenues as primary filter to substantiate plausible
pathogenic structural and functional impact of variants.
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phingolipids belong to a diverse family of (SPT), is a pyridoxal 5'- phosphate dependent

cellular lipids that perform fundamental multimeric enzyme, which acts as a vital player for
functions both as membrane components and as de novo biosynthesis of sphingolipids. This enzyme
signaling molecules (1). Cells obtain sphingolipids catalyzes the foremost step of sphingolipid
intrinsically by de novo biosynthesis and metabolism i.e., the condensation of L-serine and
extrinsically by up- take and reusing the exogenous palmitoyl coenzyme (CoA) for producing 3-
sphingolipids (1). An endoplasmic reticulum- ketodihydrosphingosine (KSD) (2, 3). The activity
confined enzyme, serine palmitoyltransferase of SPT in de novo sphingolipid biosynthesis
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pathway is required for various normal cellular
functions including the survival of adipocyte cells.
The decreased de novo sphingolipid biosynthesis
inside adipocytes leads to adipocyte death, adipose
tissue remodeling, and metabolic disorder (4).

An important SPT subunit, SPT long chain
subunit 1 encoded by SPTLC1 gene is the member
of a-oxoamine synthase family (5). It is mapped to
chromosome 9qg22.1-g22.3, and contains 15 exons
that encode for a protein with 473 amino acid
residues (6). The structure and function of SPT is
usually disturbed by mutations in SPTLC1 gene,
which occur a amino acids that are highly
conserved throughout various species (7).
Mutations in SPTLC1 have been associated with
hereditary sensory and autonomic neuropathy type |
(HSAN-1) (6, 8). HSAN-lI is an autosomal
predominant dynamic degenerative hereditary
disorder of  peripheral  sensory  neurons
characterized by dorsa root ganglia (DRG) and
motor neurons degeneration. It is the most common
subtype of HSAN or hereditary sensory neuropathy
(HSN). In HSAN-I, the enzymatic selectivity of
mutant SPT is lost and L-alanine is utilized as an
aternative substrate, which results in the formation
of atypical and neurotoxic 1-deoxy-spingolipids (9,
10). This promiscuous enzymatic activity of mutant
SPT is suggested to be the pathological reason of
HSAN-I (11, 12). A noticeable rise in endoplasmic
reticulum (ER) stress has also been observed in
HSAN-I patient cells, expressing the p.vV144D
mutant SPTLCL1 protein as compared to cells of
healthy controls (13). The protein modifications
reflect the altering cellular events that bring about
HSAN-I. Recently, a notable change in the
expresson of a group of proteins in the
mitochondria and ER has been detected in SPTLC1
p.V144D mutant lymphoblasts (14-16). Notably,
identified changes also exhibited in the p.C133W
and p.C133Y mutations (17).

During recent years, there has been extensive
consideration in associating the genetic variations
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to protein phenotype changes. However,
determining the disease-associated missense
mutations had been a challenging task for genetic
disorder research. Owing to the significance of
SPTLC1 mutations and its subsequent link with a
spectrum of clinica pathologies, this study has
intended to investigate the disease causal mutations
in exonic and regulatory regions (5’ and 3’ UTRS)
to develop the predictions and facilitate their
pathogenic characterization based on their impact to
structure and function of SPTLC1 protein. Thus, we
implemented computational approach for screening
the possible detrimental mutations of SPTLC1 and
computationally analyzed structural and functional
impact of screened potential mutations.

Material and methods

Collection of dataset

The SPTLC1 polymorphisms data belong to
NM_006415.2 transcript and NP_006406.1 amino
acid sequence was mined from databases including
NCBI (National Centre for Biotechnology
Information) affiliated dbSNP(18) and exome
variant server (Server EV. NHLBI GO exome
sequencing project (ESP)). Concerned protein
sequence and information was retrieved from
Ensembl (19) (ENSGO00000090054; ENSP00000
262554), OMIM (Online Mendelian Inheritance in
Man) (20) and UniProt (UniProt Consortium, 2015)
(015269), that provide ample high-quality
sequence and functional information of protein for
our computational analysis. Redundant mutations
obtained from various sources were eliminated to
reform the data. Based on variants nature and
position, data was classified as missense, insertion
and deletions, frameshift and untranslated regions
(Fig. 1A).
Analysis of variants at genomic level
Prediction of nsSNPs having structural and
functional impact

To predict important SNPs influencing a
protein upon substitution functionally, servers like
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Sorting Intolerant  from  Tolerant  (SIFT),
Polymorphism Phenotyping v2 (PolyPhen-2),
Protein Variation Effect Analyzer (PROVEAN) and
MutPred were used. These servers provide rapid
analysis of variants supporting high-throughput
investigation at genetic and protein level. Firstly,
the variants were assessed by a sequence
homology-based program SIFT (21-23). If the score
of the variant was less than a chosen threshold
(<0.05), the variant was classified as deleterious
and vice versa. Physiochemical differences,
evolutionary  conversation, and  substitution
proximity to the structural level alterations of
protein upon substitution were identified by
PolyPhen-2 (24). The variant was categorized as
“probably damaging” by PolyPhen-2, if the
position-specific independent count (PSIC) score
was 0.99-1.00, and “possible damaging” if the score
was 0.50-0.99, and the rest were categorized as
“benign” (with no phenotypic influence). Biological
functional changes of a protein due to a variant
were also computed by PROVEAN that worked on
sequence clustering and alignment-based scoring.
The variant was classified as deleterious if the
prediction score was <-2.5 (25, 26), according to
PROVEAN program. To examine whether the
molecular variance was involved in insurgence of
human diseases, the impact of variants was also
estimated by web-based tool MutPred (27).
Indels, frameshift and UTR variants analysis
The detrimental nature of insertions, deletions
and frameshift mutations were predicted by SIFT
Indel Classifier that requires comma separated list
of chromosome coordinates, orientation (1, -1) and
indels as input (28). Functionally important indels
were also filtered by PROVEAN. The indels were
considered deleterious if the score was <=-2.5 and
neutral if the variant score was > -2.5 (25, 26).
Functional sequence pattern positioned in 5” and 3’
UTR sequences were collected from dbSNP (18)
and specialized untranslated regions of eukaryotic
mMRNAs databases: UTRdb and UTR site (29, 30).
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These variants were analyzed by UTR specific tool
UTRScan. User submitted sequences were carefully
searched by UTRScan for any functiona elements
or patterns endorsed by UTRsite and UTR database.
Analysisof variants at structural level
Modeling of SPTLC1 protein structure

The human SPTLC1 protein sequence
comprising 473 amino acid residue was subjected to
SWISS-MODEL (31-34) for homology modeling.
Evaluation of modeled structure was carried out
using ERRAT (35), RAMPAGE (36) and ProSA-
web (37) servers. The structure was passed through
energy minimization step to remove the internal
congtraints with GROMOS96 implementation of
Swiss-PdbViewer 4.1.0 after adding hydrogen
atoms (38).
Analysis of protein characteristics properties

MUpro server was used to find out the effect
of non-synonymous SNPs (nsSNPs) on protein
stability. The predicted score less than 0 shows
decrease in protein stability due to the mutation;
contrariwise, a score greater than O refers to an
increase in protein stability (39). Solvent acce-
ssibility of structures was predicted by an artificial
neural network-based program NetSurfP-1.1 (40)
and Predict Protein (41). For approximating residue
specific quality of protein structure prediction and
the inherent B-factor profile of all residues along
the chain by combining local structure assembly
variations with sequence- and structure-based
profilingResQ server was used (42).
Functional analysis of mutations

Multi-scale binding pockets on SPTLC1
protein surface were explored by GHECOM 1.0:
Grid-based HECOMI i finder server (43). Functional
association of SPTLC1 protein was criticaly
assessed using the Search Tool for the Retrieval of
Interacting Genes (STRING) v10 database (44).
Protein-Protein interaction of SPTLC1 including
both physical and functional associations based on
known interactions (curated and experimentally
determined),  predicted interactions  (gene
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neighborhood, gene fusions and gene co-
occurrence), text mining, co-expression and protein
homology was identified. The edges of network
represent the association between nodes (interacting
proteins).
Protein-protein docking simulation

A flexible protein docking approach, the
HADDOCK (High Ambiguity Driven protein-protein
DOCKing) version 2.2 (45) was used to perform
modeling of biomolecular complex: SPTLC1 with
its highest interacting partner. The identification
of active and passive residues of interacting
biomolecules was performed by CPORT (46).
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Mutation spectrum of SPTLC1 gene

The examined gene comprises a total of 273
human SNPs belonging to different classes of
mutations including synonymous and non-
synonymous. Among all the included mutations in
our study, missense mutations seemed to be the
most abundant mutations with n =168 (61.5%)
when compared to indels (n = 3), frameshift (n=9),
and UTRs (n = 94; 34.4%) (Fig. 1A). Noticeable
uneven distribution of mutations in exons is
represented in Fig. 1B.
Analysisat genomic level
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Table 1. List of selected SPTLC1 missense variants with their corresponding exon, ch

0some position and protein

variants with predicted scores by SIFT, PolyPhen-2, PROVEAN, MutPred and MUpro.
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. NT Ex  Chr. PRO PolyPhen-2 SIFT PROVEAN Mut- MUpro
No. Variant on position Variant Pred
Pred Score Pred Score Pre Score Pred
d PR
1 310G>A 4 92080914 104A>T pr dmg 0.998 dmg 0.01 del -3.079 0.779 -1.2661182
2 325C>G 4 92080899 109L>V pr dmg 0.989 dmg 0.01 del -2.901 0.856 -1.0533436
3 398G>A 5 92080045 133C>Y  prdmg 1 dng O del  -10.725 0.839 -0.282728
4 399T>G 5 92080044 133C>W  prdmg 1 dmg 0 del -10.726 0.853 -0.31455734
5 431T>A 6 92068095 144V>D pr dmg 0.998 dmg O del -6.207 0.871 -1.9523302
6 457G>A 6 92068069 153A>T  posdmg  0.882 dng O del  -3.584 0.901 -1.3441989
7 481G>A 6 92068045 161A>T possdmg 0.87 dmg O del -3.411 0.796 -1.2131073
8 485T>G 6 92068041 1621>S pr dmg 0.996 dmg 0 del -5.365 0.772 -2.3519006
9 524T>C 6 92068002 1751>T pr dmg 0.999 dng O del  -4.698 0.784 -1.8899242
10 563A>C 7 92059306 188D>A pr dmg 0.988 dmg 0.01 del -7.484 0.895 -0.97234279
11 743A>G 8 92055442 248Y>C benign 0.053 dmg O del -7.668 0.771 -0.67134313
12 832T>G 9 92050016 278S>A possdmg 059 TOL  0.07 del  -2.641 0.845 -1.2437183
13 929C>G 10 92047668 310A>G benign 0.006 dmg 0.02 del -2.824 0.832 -1.4961316
14 946G>A 10 92047651 316G>S pr dmg 0.993 dmg 0.01 del -5.191 0.927 -1.3775049
15 952T>A 10 92047645 318C>S  prdmg 0.989 TOL  0.05 del  -8.278 0.808 -0.56363416
16 992C>T 11 92047261 331SSF benign 0.222 dmg 0.03 del -4.533 0.759 -0.67561754
17 992C>A 11 92047261 331S>Y possdmg 0.454 dmg O del -4.50 0.825 -0.97224916
18 1055C>T 11 92047198 352A>V  benign 0.066 dmg 0.01 del  -2.909 0.857 -0.63107997
19 1160G>C 13 92038342 387G>A benign 041 dmg 0.03 del -3.117 0.817 0.07064886
20 1334G>A 15 92032553 445R>Q pr dmg 0.998 dmg 0.01 del -3.245 0.88 -1.3868538
21 1333C>T 15 92032554 445R>W  pr dmg 1 dng O del  -6.841 0.874 -1.2548201

NT: nucleotide; Chr: chromosome; PRO: protein; Pred:

tolerant; N: neutral; DIS: disease.

Analysis of deleterious missense mutations
Among the 168 missense mutations,
SIFTanalysis revealed 80 (47.6%) nsSNPs as
“damaging” or “intolerant” having a tolerance
index score of <0.05, while 88 (52.3%) mutations
were “tolerant” with > 0.05 score (Fig. 1C). Out of
80 damaging mutations, 33 (41.25%) and 24 (30%)
nsSNPs were “extremely-intolerant” with 0.00 and
0.01 score, respectively and 23 (28.75%) nsSNPs
were just “intolerant”. According to PolyPhen-v2
prediction, a tota of 63 (37.5%) nsSNPs were
expected to be damaging. Of which, 36 nsSNPs
were “probably damaging” with score ranging from

71 Int JMol Cell Med Winter 2019; Vol 8 No 1

prediction; Accu: accuracy; PR: probability; poss: possibility; dmg: damaging; TOL:

0.99 to 1.00, and 27 were “possibly damaging” with
score ranging from 0.5 to 0.9, and the remaining
105 nsSNPs were classified as benign. A total of 77
(45.8%) mutations were predicted deleterious and
91 (54.1%) were neutra by PROVEAN. Among all
the deleterious mutations 54 (70.1%) were least
deleterious, 23 (29.8%) were deleterious with score
< -5.0, of which 2 mutations (p.C133CY and
p.C133W) were deleterious with score < -10.0.
About 104 (61.9%) and only 28 (16.66%) nsSNPs
with > 05 and 0.75 probability score were
predicted as disease associated mutations by
MutPred. However,

the concordant analysis
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predicted 21 mutations mentioned in Table 1 as revealed that all the selected mutants would
potential predicted mutations that can be decrease the stability except p.G387A as the
deleterious. Protein stability analysis by MUpro predicted score of al other mutants was less than

Table 2. SIFT indel classifier and PROVEAN prediction analysis for indels and frameshift variants.

Nucleotide variant Coordinates Subs. Exo AA Clin. PROVEAN SIFT

type n variant sg. Score Pred. Score Pred.
¢.139delC 92112481 FS-del 2 Q47Kfs NA - - 0.858 dam
c.174delA 92108826 FS-del 3 E59Nfs NA - - 0.858 dam
€.281 282delTG 92080942:92080943 FS-del 4 V94Gfs NA - - 0.858 dam
€.277_278insA 92080946:92080947 FS-ins 4 T93Nfs NA - - 0.858 dam
c.452 454delGCC 92068072:92068074 del 6 R151de NA -12.837 dele 0.858 dam
€.804_805insTA 92050043:92050044 FS-in 9 A269Terfs  NA - - 0.858 dam
€.895 897delGAT 92047700:92047702 del 10 D299del NA -8.167 dele 0.529 dam
€.963_964insG 92047633:92047634 FS-ins 10 S322Vfs NA - - 0.858 dam
€.1031dd T 92047222 FS-del 11 L344Rfs NA - - 0.858 dam
€.1029 1030delCC 92047223:92047224 FS-del 11 L344Vfs NA - - 0.858 dam
€.1305_1307delAGA  92034831:92034833 del 14 E436del NA -1.925 N 0.858 dam
€.1361 1362delAG 92032525:92032526 FS-del 15 E454Gfs NA - - 0.783 Dam

Subs. Type: substitution type; FS: frameshift; del: deletion; ins: insertion; Clin.sig.:.clinical significance; Pred.: prediction; dele: deleterious; N: neutral; dam:
damaging.

A Overall quality factor: 94.987
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Table 3. UTRScan prediction result for 3’UTR variants of SPTLC1 protein (Transcript ID:NM_006415.2).

S.No. rsiD Position Prediction S.No. rsiD Position Prediction

1 rs758071979 c.*10C>T - 40 rsl15637483 c.*490A>G -

2 rs200727312 c*11G>A - 41 rs531407417 c.*494T>C -

3 rs778790410 c.*13G>A - 42 rs74939390 c.*525G>T UORF [519,608]
4 rs756960214 c.*20G>C uORF[17,109] 43 rsl44733313 c¢.*569G>A  UORF [519,608]

5 rs753599241 c.*23T>C UuORF[17,109] 44 rs367609260 c¢.*581T>C UORF [519,608]

6 rs867197507 c.x28C>T uORF[17,109] 45 rs537125477 c¢*590T>G -

7 rs374737655 c.*31C>T UORF[17,109] 46 rs773137233 c.*614C>T -

8 rs760602474 c.*38C>T uORF [17,109] 47 rs576072015 c.*654A>G -

9 rs370307230 C.*39G>A UORF[17,109] 48 rs765100762 c.*657A>C -

10 rs202080725 C.*46A>C uORF[17,109] 49 rs761445360 c.*664C>G -

11 rs550740752 C.*46G>A UORF[17,109] 50 rs189417944 c*670G>A -

12 rs763262266 c.*50T>C uORF[17,109] 51 rs866982133 c.*711T>G UORF [705,782]
13 rs773269599 c.*58C>T UORF[17,109] 52 rsl42008725 c.*713A>C  uORF [705,782]
14 rs535778954 c.*60C>T uORF[17,109] 53 rs879644362 c.*745C>G  UORF [705,782]
15 rs73653020 C.*61G>A UORF[17,109] 54 rs768395365 c.*750C>T UORF [705,782]
16 rs777118329 C.*68A>G uORF[17,109] 55 rs568268325 ¢.*809T>C -

17 rs1131864 c.*78C>T UORF[17,109] 56 rs527344506 c.*822C>T -

18 rs769349062 c.*95C>T uORF[17,109] 57 rs374347262 c.*828T>G UORF [827,1057]
19 rs1131866 c*102A>G  uORF[17,109] 58 rs760223808 c.*864C>T UORF [827,1057]
20 rs7024575 c*112G>A - 59 rs535318963 ¢.*867G>A  UORF [827,1057]
21 rs189582528 c*124A>G - 60 rs570805058 c.*875A>T UORF [827,1057]
22 rs771433261 c*133A>G  uORF[125,250] 61 rs570164486 c.*916A>G  UuORF [827,1057]
23 rs745563960 c*144A>G  uORF[125,250] 62 rs775237786 c.*932A>G  uORF [827,1057]
24 rs544879549 c*147G>A  uORF[125,250] 63 rs771458551 ¢.*983T>C UORF [827,1057]
25 rs184220566 c.*178T>A UORF[125,250] 64 rs559735773 ¢.*1009G>T uORF [827,1057]
26 rs552433019 Cc*190A>C  uORF[125,250] 65 rs530944752 c¢.*1015G>A uORF [827,1057]
27 rs753700526 c*196A>G  uORF[125,250] 66 rs367968859 ¢.*1034T>C uORF [827,1057]
28 rs377023278 C*¥217T>A UuORF [125,250] 67 rs766363634 c¢.*1046T>C uORF [827,1057]
29 rs531033514 c.*228A>G  uORF[125,250] 68 rsl45019674 c¢.*1052A>G uORF [827,1057]
30 rs563505829 C*¥272A>G - 69 rs77041650 c¢.*1067C>T uORF[1063,1158]
31 rs766183581 c.*290T>C ORF[281,376] 70 rs548652432 ¢.*1068A>G UORF [1063,1158]
32 rs542032121 c*320G>A ORF[281,376] 71 rsl42740904 c.*1154T>C uORF[1063,1158]
33 rs564259149 c*334C>G  ORF[281,376] 72 rs112076327 c¢*1170T>C -

34 rs529884120 c.*401C>A - 73 rs760602744 c.*1209G>A UORF[1177,1242]
35 rs372012368 C.*402A>T - 74 rs541013337 ¢.*1221C>T  uORF [1177,1242]
36 rs7944 c*445A>G  uORF[410,478] 75 rs662277733 ¢.*1226G>T UuORF[1177,1242]
37 rs868416931 c.*451G>T UORF [410,478] 76 rs530126189 ¢.*1230G>A UORF [1177,1242]
38 rs541284488 C.*483A>G - 77 rs7035964 c*1302T>G CPE [1290,1339],
39 rs181586912 Cc.*488G>T - IRES [1243,1339],

UORF [1265,1333],
PAS[1300,1339]
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Table 4. UTRScan prediction result for 5’UTR variants of SPTLC1 protein.

S.No. rsiD Transcript ID Position Prediction
1 rs750255730 NM_006415.2 c.-3A>G -
2 rs758217796 NM_006415.2 c.-6C>A -
3 rs746676272 NM_006415.2 c.-7G>T =
4 rs754378890 NM_006415.2 c.-10G>C -
5 rs780821663 NM_006415.2 c.-19C>T -
6 rs558203491 NM_006415.2 c.-27C>T -
7 rs770382920 NM_006415.2 C.-28C>A -
8 rs201897322 NM_006415.2 c.-29A>C -
9 rs773682043 NM_006415.2 c.-34T>C =
10 rs866449132 NM_006415.3 c.-39C>A -
11 rs749631140 NM_006415.3 c.-49A>G -
NM_006415.3 C.-49A>T -
12 rs7 74659397 NM_178324.2 c.-51G>A -
13 rs55740103 NM_006415.3 C.-64T>C -
14 rs552690353 NM_178324.2 c.-70C>T =
15 rs184693119 NM_006415.3 c.-76T>C -
16 rs111298150 NM_006415.3 c.-96C>T -
17 rs557306141 NM_178324.2 ¢.-103G>T -
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Fig. 4. Protein mutations analysis. A: 21 identified mutations in the protein sequence showed that all the predicted mutations belong to the|
serine C-palmitoyltransferase activity domain of the protein; B: structural differences between selected wild type and mutant residues of
SPTLC1 protein.

zero (Table 1). associated with polyadenylation signal (PAS),
Indel, frameshift and UTR variantsanalysis cytoplasmic  polyadenylation (CPE), internal
A total of 94 UTR variants were identified. ribosomal entry site (IRES) (Table 3).

Out of which 17 variants were lying in 5° UTR and SPTLC1 structural analysis

77 in 3 UTR sequences (Tables 3 and 4). The 3D structure modeling and evaluation

UTRscan identified that 21 variant had no effect, Native human SPTLC1 model built by
but 55 variants were lying in the region important homology modeling based on 3a2b.1.A template
for open reading frame (ORF) and 1 variant showed the good overall quality and stereo-
¢.*1302T>G in 3’'UTR was found in the region chemical properties suggesting a reliable structure
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(Fig. 2). The whole structure was modeled from 83-
471 residues and consisted of 17 alpha and 12 beta
sheets. RAMPAGE showed 376 (97.2%) residues
in favored region, 9 (2.3%) in alowed region, and
only 2 (0.5%) residues (Alal72 and Lys268) as

Sadaf T et al.

outliers. However, the loca mode quality
estimated by PROSA-web calculated the energies
of residues as negative and the overal quality
model of the predicted structure indicated the -9.24
z-score that lies within the characteristic range.

Table 5. Surface accessibility prediction scores by NetSurfP and ResQ web server for models.

Position Residue RSA ASA Z-score  Class rBF nBF
assigned

104 A 0.022 2.402 0.215 B 21.03 -0.38
T 0.031 4.244 -0.356 B - -

109 L 0.089 16.296 -0.912 B 22.39 -0.21
\% 0.086 13.234 -0.852 B - -

133 C 0.2 28.108 -2.467 B 23.41 -0.08
Y 0.22 46.993 -2.339 B - -
W 0.182 43.867 -2.631 B - -

144 \% 0.117 17.937 0.914 B 23.54 -0.06
D 0.105 15.188 0.997 B - -

153 A 0.128 14.128 0.525 B 22.14 -0.24
T 0.156 21.609 0.577 B - -

161 A 0.017 1.840 0.828 B 21.90 -0.27
T 0.018 2.441 0.737 B - -

162 I 0.033 6.105 0.675 B 20.65 -0.27
S 0.035 4,102 0.607 B - -

175 I 0.044 8.214 0.470 B 21.16 -0.36
T 0.047 6.477 0.275 B - -

188 D 0.085 12.220 -0.493 B 22.10 -0.24
A 0.072 7.912 -0.395 B - -

248 Y 0.087 18.656 -0.160 B 22.43 -0.20
C 0.092 12.917 -0.080 B - -

278 S 0.040 4,676 -1.360 B 21.67 -0.30
A 0.040 4.419 -1.457 B - -

310 A 0.047 5.223 -2.633 B 22.10 -0.24
G 0.045 3.534 -2.626 B - -

316 G 0.028 2.196 -1.564 B 20.77 -0.41
S 0.034 3.973 -2.044 B - -

318 C 0.045 6.290 -0.178 B 21.33 -0.34
S 0.037 4,301 -0.952 B - -

331 S 0.360 42.227 -0.624 E 24.66 0.07
F 0.360 72.352 -0.700 E - -
Y 0.376 80.394 -1.037 E - -

352 A 0.025 2.799 0.332 B 21.44 -0.33
\% 0.025 3.873 0.234 B - -

387 G 0.311 24.460 -1.840 B 29.44 0.67
A 0.340 26.750 -1.867 E - -

445 R 0.041 9.389 0.259 B 20.76 -0.41
Q 0.043 7.662 0.338 B - -
W 0.047 11.328 0.068 B - -

RSA: relative surface area (value <0.2 (buried residues);> 0.2 (exposed residues). ASA: absolute surface area (value <25% of
ASAma(buried); value> 25% of ASAmax(exposed)); B: buried or E: exposed; rBF: raw beta factor; nBF: normalized beta factor.
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Protein characteristic propertiesanalysis

In our analysis, PredictProtein predicted that most
of the residues were in buried region (Fig. 3A).
Thus, we employed NetSurfP server. Most of the
identified mutant residues belonged to the buried
region of protein (Table 5) except Ser331.
Moreover, the estimated local quality defined as the
distance deviation between native and model
protein residual position using support vector
regression showed that most of the residues were
below the cut-off value (Fig. 3B). The stability and
flexibility of different parts of the model evaluated
by ResQ server depicted that most of the residues
belonged to the well-order structure of the protein
as the calculated raw and normalized beta factor
values were less than the cut-off score (Fig. 3C
and Table 5). It has been observed that the
mutated residues belonged to the serine C-
pa mitoyltransferase activity domain (Fig. 4A).
Also, structural difference of amino acids reveaed
that substituted residues have explicit properties
like size, shape, density and charges (Fig. 4B), thus

A

-------

would impact the stability and interaction with
other molecules
Functional analysis of mutations

To elucidate the protein function and its
association with other molecules, protein network
analysis and interaction pattern has opened the
avenues. Top 5 binding pockets predicted by
GHECOM were graphically represented in Fig.5A.
Protein-protein network and interaction analysis

The STRING database exhibited 10 functional
partners of SPTLC1, among which 8 were found
with the confidence score >0.9 and two with score
>0.99 (Fig. 5B and Table 6). Predicted interaction
network has demonstrated that SPTLC2 and
SPTLC3 were the strongest interaction partners
with highest score (¢ = 0.99) (Fig. 5B and Table 6)
and were shown to be involved in heterodimer

formation with SPTLC1 protein. We pursued our
analysis to investigate the SPTLC1 protein
interaction upon binding to SPTLC2. Interacting
residues of SPTLC1 with SPTLC2 protein are
illustrated in Fig. 6.

Fig. 5. Functional analysis of mutations. A: predicted multi-scale binding pockets on protein surface representation by GHECOM; B:
functional protein network analysis. STRING interaction interwork show the association of SPTLC1 with different protein partners. In the

above picture circles represent the one protein and the edges represent the protein-protein interactions.
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Table 6. Predicted functional partners of SPTLC1 by STRING database.

Node 1 Node 2 Neighbourhood Phyloge Homo Co Experimental Data  Automated Combi
on netic logy expre ly base  Text mining ned
chromosome cooccur ssion deter mined annot score

rence interaction ated

SPTLC1 SPTLC2 O 0.526 0.74 0.27 0.925 0.9 0.931 0.996

SPTLC3 SPTLC1 O 0.526 0.733 0.27 0.921 0.9 0.928 0.995

SPTSSA SPTLC1 O 0 0 0.049 0.329 0.9 0.864 0.99

SPTSSB SPTLC1 O 0 0 0 0.329 0.9 0.864 0.99

KDSR SPTLC1 0.09 0 0 0.092 O 0.9 0.652 0.967

ORMDL3 SPTLC1I O 0 0 0.128 0.462 0.9 0.282 0.961

ZDHHC9 SPTLC1 O 0 0 0.053 0 0.9 0.274 0.925

GOLGA7 SPTLC1L O 0 0 0.053 0 0.9 0 0.901

SPTLC1 NAAS50 0 0 0 0104 O 0 0.868 0.877

AGXT SPTLC1L O 0 0 0.051 O 0.8 0.187 0.832

Fig. 5. Proposed binding interaction model between wild SPTL C1 and SPTL C2 reveals the active residues of wild SPTLC1 protein.
Orange represents wild SPTLC1 while green represents SPTLC2. A: illustration of interacting model and binding pocket before and after
180°rotation; B: residues of wild SPTLC1 binding pocket involved in interaction are |labelled.
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Due to the continuous discovery of genetic
variations, experimentally delineation of the
correlation of disease associated missense variants
with  underlying biological mechanism is
demanding. Thus, in the era of computational
biology, advanced insilico programs exhibit reliable
approach in listing out the candidate genetic
variants in accordance to their deleterious impact
and consequence on structure and function of
corresponding proteins. The concordant analysis of
prediction programs increases the prediction
accuracy, and thus reduces the false positive rate.

In the present study, computational screening
was done using sequence and structure homology-
based programs including SIFT and PolyPhen-2.
Computational  pathogenic  variants prediction
programs review has inferred that SIFT and
PolyPhen has better execution power in identifying
the pathogenic variants (47), likewise supported by
Gnad et d., in 2013 (48). In addition, we also
incorporated PROVEAN and MutPred results for
our analysis. All missense mutations were further
checked for disease association. Deleterious
missense mutations predicted by three of the
servers were selected. The destabilizing effect in
majority of the deleterious mutations gives an
indication about the disturbance in the structure and
function of protein. Taking in consideration the
above selection scheme, the selected mutations
were screened from the data sets for further analysis
(Table 1).

Among all selected missense mutations (Table
1), clinical and molecular consequences of some of
the mutations have been reported previoudy (49-
53). The variant p.S331F wass found to be
associated with early-onset and a severe HSAN
phenotype (49, 50, 53). Additionaly, p.C133W,
p.C133Y and p.V144VD variations in SPTLC1
were the most examined missense mutations and
observed to be the most widely recognized reason
for HSAN-I (5, 51, 54, 55). Our concordant in

79 Int JMol Cell Med Winter 2019; Vol 8 No 1

silico predictions for p.C133W, p.C133Y and
p.V144D mutations also revealed the high
deleterious effects (Table 1).

Prediction results of SIFT Indel Classifier and
PROVEAN depicted frameshift variants and indels
in coding sequence of SPTLC1 as deleterious.
Likewise, UTR variants were examined to search a
variant in any functional pattern endorsed by
UTRsite and UTR database. The 3’UTR contains
the two different polyadenylation signals that
mediate the poly (A) tail synthesis (56): nuclear
polyadenylation signal (PAS) and CPE element.

Native human SPTLC1 model built by
homology modeling based on 3a2b.1.A template
shows the good overall quality and stereo-chemical
properties. Protein relative solvent accessibility
gives a protein structural and functional insight (57)
as due to a residual mutation the solvent
accessibility can be decreased, affecting protein
stability. On average, disease causing variants that
are likely to destabilize the protein reside mostly at
the buried region of protein (58). In our analysis,
most of the identified mutant residues belonged to
the buried region of protein (Table 5) except
Ser331. It has also been observed that the mutated
residues belonged to the serine C-
palmitoyltransferase activity domain and the
structural difference of amino acids revealed that
substituted residues have explicit properties like
size, shape, density, and charges (Fig. 4B), and thus
will impact the stability and interaction with other
molecules.

Predicted interaction network demonstrated
that SPTLC2 and SPTLC3 were the strongest
interaction partners. The SPTLCI1-SPTLC2-
SPTSSA complex expresses a strong preference for
C16-CoA substrate, while SPTLC1-SPTLC3-
SPTSSA complex uses both C14-CoA and C16-
CoA substrate, with dight preference for C14-CoA
(59). A study shows that SPTLC1 mutations induce
a shift in SPT substrate specificity that leads to the
formation of atypical non-degradable neurotoxic
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sphingolipid metabolites resulting in HSAN-1 (13).
Study has also revealed the importance of disease-
causing mutations in the active site of SPT that
alters the relative positions of hydrophobic residues
of both SPTLC1 and SPTLC2 subunits at dimer
interface, thus affecting the enzyme activity (9, 60).
Hence, it is certainly estimated that the enzymatic
action of SPT would be influenced by the mutations
either through the allosteric property of protein or
the disturbance in the geometry of key residues
present within the active site of enzyme that
contributes in the recognition of substrate, or
through the inadequate dimerization of the SPT
monomers (61). It has been reported that in
p.C133W, p.C133CY and p.V144D model, these
amino acid residues do not specifically interact with
the coenzyme or the substrate but lie at two
closures of the loop that contact the other monomer
to retain the dimer structure (61). Our study also
shows that these selected residues also do not
directly contact with SPTLC2 protein, but may be
present around the interacting residues (Fig. 6).

Many previous comprehensive studies have
shown the efficacy of consolidated computational
programs for sorting detrimental variants from huge
dataset (62-68). Previous studies have mentioned
several physiological aterations in SPTLC1 mutant
cells, including a rise in both ER stress and
potential oxidative phosphorylation (13, 14). Thus,
in this study, we systematically demonstrated the
computational investigation of SPTLC1 variants to
study the aberrant effect of most deleterious
variants affecting the structural and functional
properties of protein.

In the study, we demonstrated a bioinfor-
matics-based strategy for prioritizing the potentially
functional SNPs from enormous set of poly-
morphisms. It proposes that the combination of
various computational tools may impart an
aternative approach that could opt for targeting
SNPs. However, the functional consequence of
candidate SNPs was not experimentally evaluated.

Sadaf T et al.

We believe that in future our provided prioritized
liss of potentially deleterious variants will be
helpful for determine the contribution of key SNPs
in disease progression.
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