:: Volume 1, Issue 1 (Int J Mol Cell Med 2012) ::
Int J Mol Cell Med 2012, 1(1): 30-38 Back to browse issues page
Stress response induced by carbon nanoparticles in Paracentrotus lividus
Elisabetta Carata1, Bernardetta Anna Tenuzzo1, Arnò Federica1, Alessandro Buccolieri2, Antonio Serra2, Daniela Manno2, Luciana Dini *3
1- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
2- Department of Materials Science, University of Salento, Lecce, Italy.
3- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy. , luciana.dini@unisalento.it
Abstract:   (14416 Views)
Members of the 14-3-3 protein family are involved in many important cellular events, including stress response, survival and apoptosis. Genes of the 14-3-3 family are conserved from plants to humans, and some members are responsive to UV radiation. Despite the high rate of pollution generated by nano-pollutants, up to now is totally obscure their toxic effect on development. Embryos treated with carbon nanoparticles, RNA preparation, retro-transcription and quantitative real-time PCR. In response to carbon nano-particles exposure, the embryos collected 24 h later showed a 3,07-fold at 5x1012 p and a 1,58-fold at 2.5x1013 p and a 1,92-fold at 2.5x1014 p increase in Pl14-3-3ε transcript levels compared with controls. The Pl14-3-3ε mRNA delocalization parallels the failure in archenteron elongation observed morphologically, as well as the lack of specific endoderm markers. Here, we report the isolation of the complete cDNA encoding the 14-3-3 epsilon isoform from Paracentrotus lividus sea urchin embryos, referred to as Pl14-3-3ε. Pl14-3-3ε mRNA levels were measured by RT-PCR during development and found to increase from the mesenchyme blastula to the prism stage. Our results confirm the involvement of 14-3-3ε in the stress response elicited by carbon nano-particles.
Keywords: Paracentrotus lividus, carbon nanoparticles, toxicity, 14-3-3 epsilon, gene expression
Full-Text [PDF 1266 kb]   (3653 Downloads)    
Type of Study: Original Article | Subject: Cancer
Received: 2011/12/27 | Accepted: 2013/09/14 | Published: 2013/09/14


XML     Print



Volume 1, Issue 1 (Int J Mol Cell Med 2012) Back to browse issues page