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One of the burning issues facing healthcare organizations is multidrug-resistant (MDR) 

bacteria. P. aeruginosa is an MDR opportunistic bacterium responsible for nosocomial and 

fatal infections in immunosuppressed individuals. According to previous studies, efflux pump 

activity and biofilm formation are the most common resistance mechanisms in P. aeruginosa. 

The aim of this study was to propose new antimicrobial peptides (AMPs) that target P. 

aeruginosa and can effectively address these resistance mechanisms through in silico and in 

vitro assessments. Since AMPs are an attractive alternative to antibiotics, in vitro experiments 

were carried out along with bioinformatics analyses on 19 Nef peptides (derived from the HIV-

1 Nef protein) in the current study. Several servers, including Dbaasps, Antibp2, 

CLASSAMP2, ToxinPred, dPABBs and ProtParam were used to predict Nef peptides as 

AMPs. To evaluate the binding affinities, a molecular docking analysis was performed with 

the HADDOCK web server for all Nef peptide models against two effective proteins of P. 

aeruginosa (MexB and PqsR) that play a role in efflux and quorum sensing. Moreover, the 

antibacterial and antibiofilm activity of the Nef peptides was investigated in a resistant strain 

of P. aeruginosa. The results of molecular docking revealed that all Nef peptides have a 

significant binding affinity to the abovementioned proteins. Nef-Peptide-19 has the highest 

affinity to the active sites of MexB and PqsR with the HADDOCK scores of -136.1 ± 1.7 and 

-129.4 ± 2, respectively. According to the results of in vitro evaluation, Nef peptide 19 showed 

remarked activity against P. aeruginosa with minimum inhibitory and bactericidal concen-

trations (MIC and MBC) of 10 µM and 20 µM, respectively. In addition, biofilm inhibitory 

activity was observed at a concentration of 20 µM. Finally, Nef peptide 19 is proposed as a 

new AMP against P. aeruginosa. 
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Introduction 

Nowadays, due to the overuse and misuse of antibiotics, a fundamental challenge for researchers is 

to discover new therapeutics to counteract emerging bacterial resistance (1). A systematic study (in 2022) 

estimated that in 2019, 1.27 million deaths occurred in 204 countries due to bacterial resistance (2). 

According to reports from the World Health Organization (WHO), P. aeruginosa is one of the greatest 

threats to human health (3). The mortality rate in patients with P. aeruginosa infections is 18 to 61 percent 

(4). This bacterium causes an opportunistic nosocomial infection that occurs in cystic fibrosis patients due 

to the formation of a biofilm in their lungs (5). P. aeruginosa is resistant to various antibiotics such as 

ceftazidime, gentamicin and ciprofloxacin (6). The low permeability of its cell wall, which is 100 times 

more impermeable than that of Escherichia coli (7), the high expression of efflux pumps and biofilm 

formation are some of the reasons for the resistance of this bacterium (8). 

The efflux pump system (EPS) such as mexCD-oprJ, mexXY-oprM, mexEF-oprN and mexAB-oprM 

play a crucial role in the resistance of P. aeruginosa by expelling toxic substances, including antibiotics, 

from the cell (9) (10). Overexpression of mexAB-oprM leads to a marked development of MDR strains 

of P. aeruginosa (11). EPS consists of three components: the proton motive force (MexB), outer membrane 

agent (OprM) and periplasmic adhesion protein (MexA) (12). The EPS can be inhibited by interfering with 

the regulatory mechanism against its overproduction, blocking the pump outlets (OprM), altering the 

structure of antibiotics and disrupting the assembly of efflux pump autoinducers by EP inhibitors (EPIs). A 

molecular docking study indicates that some antibiotics act as competitive inhibitors of MexB and determine 

the active amino acids (10). 

Quorum sensing (QS) and biofilm formation are other mechanisms responsible for the adaptability and 

resistance of P. aeruginosa (13). This organism is a typical example of biofilm production (14). QS plays a 

role in biofilm production and the use of QS inhibitors (QSIs) could be an excellent way to control MDR 

bacteria (15). The QS systems of P. aeruginosa consist of the RhlI/RhIR, LasI/LasR and Pseudomonas 

quinolone signal (PQS) types (16). PqsR, also known as MvfR (Multiple virulence factor Receptor), is an 

essential multifunctional receptor in the PQS. Suppression of PqsR disrupts QS signaling and subsequently 

inhibits the production of virulence factors and biofilm (17). Antimicrobial peptides (AMPs) have been 

recognized as biofilm suppressors and can reduce the development of resistance (18). 

AMPs differ in many ways but have some common features (19). For example, AMPs typically consist 

of less than 100 amino acids, mainly have an α-helical configuration and are mostly cationic (20). AMPs 

are inherently amphipathic and hydrophobic, which enables them to interact more strongly with the bacterial 

membrane (21). Scientists have found AMPs in various organisms (mammals, amphibians, aquatic animals, 

insects and plants) and microorganisms (protozoa, fungi and bacteria) (22). 

More importantly, the researchers have discovered new AMPs in protein sequences of some viruses. 

For instance, the peptides HBc ARD and pepR are isolated from hepatitis B virus (HBV) and the capsid of 

Dango virus, respectively (23, 24). Therefore, the current study utilized a bioinformatics approach to 

investigate 19 peptides from the HIV-1 Nef protein (Nef peptides) for the prediction of antibacterial and 

antibiofilm activity, estimation of toxicity and half-life, and analysis of molecular interactions. The present 

study also investigated the inhibitory effect of Nef peptides against P. aeruginosa (PTCC 1027) in vitro.  
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Materials and methods 

The materials and methods of the present study comprised two parts: computational and experimental 

investigations. The workflow, the different methods used in the current study and the results are summarized 

in a schematic illustration as a draft of the work (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Illustration of the study workflow.  

In silico Studies 

3D Structure of Receptors and Nef-Peptides  

The 3D structures of the MexB and PqsR proteins were determined from the RCSB database 

(www.rcsb.org) using PDB ID 6IIA and 4JVD with a resolution of  2.91 and 2.95 Angstroms, respectively. 

The structures of the Nef peptides were generated from their sequences using de novo modeling in the PEP-

FOLD3.5 server with default parameters (25). The sequences of the Nef peptides are listed in Table 1.  

Optimization and Verification of Peptide Models 

The best 3D models of the Nef peptides were optimized in 100 steps using the steepest descent 

algorithm of the Chimera software (version 1.15) (26). Finally, the PDB files of the optimized peptides  

were uploaded to PROCHECK and ProSA to check Ramachandran plots and Z-score numbers, respectively 

(27, 28). 

Antimicrobial and Antibiofilm Prediction of Nef-Peptides 

The Nef peptide sequences were screened for antimicrobial activity using three prediction web servers, 

including CLASSAMP2 (29), Antibp2 (30), and Dbaasps (31). The dPABBs web server was also used to 

predict antibiofilm activity (32). Each peptide was scored based on the probability of predicted antimicrobial 

properties. These servers use a variety of training datasets for machine-learning approaches. Various 

algorithms were used, including Random Forest (RF), Discriminate Analysis (DA), Support Vector 

Machine (SVM) and Artificial Neural Network (ANN) (29, 33). 

Physicochemical Properties prediction 

ProtParam was used to predict critical indices such as GRAVY (34), amphiphilicity, net charge, net 

hydrogen, and molecular weight. Based on the amino acid composition of each peptide sequence, the 
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dPABBs web server predicts the physicochemical properties of each query (32). Furthermore, the 

percentage of secondary structure in the Nef peptides was analyzed using YASARA software (version 

21.12.19) (35).  

Toxicity and Stability Estimation 

The peptide sequences were checked using the online tools ToxinPred and ProtParam to predict the 

instability index, half-life and toxicity in mammalian cells (30, 34).  

Molecular Docking Analysis  

Molecular docking was performed using the HADDOCK web server (HADDOCK2.4) (36, 37), and 

19 Nef peptides were docked to MexB and PqsR proteins. The peptides were considered as ligands (labeled 

in chain B), and MexB and PqsR proteins were selected as receptors (labeled in chain A). Docking was 

performed with optimized parameters for the peptide-protein complex. For the sampling parameters, the 

number of structures for rigid body docking was set to 1000, the number of structures for semi-flexible 

refinement was set to 200, the cutoff parameter for RMSD was set to 5 and water was selected as the explicit 

solvent.  

Peptide-Protein Complex Interaction Analysis 

The Discovery Studio Visualizer software and the PDBsum tool were used to analyze the peptide-

protein complexes and display the binding residues (38, 39). 

In vitro Studies 

Bacterium Strain and Nef-Peptide Preparation 

Table 1. The sequences of all 19 Nef peptides. 

Nef-Peptides Sequences 

Nef-Peptide-1 GGKWSKSSVVGWPTVRERMR 

Nef-Peptide-2 GWPTVRERMRRAEPAADGVG 

Nef-Peptide-3 RAEPAADGVGAASRDLEKHG 

Nef-Peptide-4 AASRDLEKHGAITSSNTAAT 

Nef-Peptide-5 AITSSNTAATNAACAWLEAQ 

Nef-Peptide-6 NAACAWLEAQEEEEVGFPV T 

Nef-Peptide-7 EEEEVGFPVTPQVPLRPMTY 

Nef-Peptide-8 KAAVDLSHFLKEKGGLEGLI 

Nef-Peptide-9 KEKGGLEGLIHSQRRQDILD 

Nef-Peptide-10 HSQRRQDILDLWIYHTQGYF 

Nef-Peptide-11 LWIYHTQGYFPDWQNYTPGP 

Nef-Peptide-12 PDWQNYTPGPGVRYPLTFGW 

Nef-Peptide-13 GVRYPLTFGWCYKLVPVEPD 

Nef-Peptide-14 CYKLVPVEPDKVEEANKGEN 

Nef-Peptide-15 KVEEANKGENTSLLHPVSLH 

Nef-Peptide-16 TSLLHPVSLHGMDDPEREVL 

Nef-Peptide-17 GMDDPEREVLEWRFDSRLAF 

Nef-Peptide-18 EWRFDSRLAFHHVARELHPE 

Nef-Peptide-19 HHVARELHPEYFKNC 

 [
 D

O
I:

 1
0.

22
08

8/
IJ

M
C

M
.B

U
M

S.
13

.1
.4

6 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
cm

ed
.o

rg
 o

n 
20

24
-1

0-
06

 ]
 

                             4 / 18

http://dx.doi.org/10.22088/IJMCM.BUMS.13.1.46
http://ijmcmed.org/article-1-2040-en.html


Antibacterial activities of HIV-1 Nef-Peptides against Pseudomonas aeruginosa/ Koosehlar E, et al                                                           50 

International Journal of Molecular and Cellular Medicine. 2024; 13(1): 46-63 

P. aeruginosa (PTCC 1074), also known as ATCC 9027, was obtained from Iranian Research 

Organization for Science and Technology (IROST), Tehran, Iran. This species was cultured in nutrient broth 

and agar (NB and NA) for 24 hours at 37 °C, stored at four °C and recultured for subsequent studies. The 

nineteen Nef peptides were purchased from the Cenetr for AIDS Reagents, National Institute for Biological 

Standards and Control (NIBSC), UK (with repository reference ARP7074). The solution of Nef peptides 

was prepared in deionized water at a concentration of 2560 µM based on their molecular weight. 

Antibacterial Susceptibility Testing 

A 0.5 McFarland turbidity standard (1.5 × 108) was prepared from overnight cultured P. aeruginosa 

PTCC 1074, and added to 96-well microplates (SPL Life Sciences, South Korea). In addition, antibacterial 

susceptibility was performed and evaluated using the minimum inhibitory concentration (MIC) method. In 

brief, 100 µl of Nef peptides, 100 µl of NB medium and 50 µl of bacterial suspension were added to each 

well. The bacterial suspension and NB medium were positive and negative controls, respectively. The 

lowest concentration at which no growth was seen after overnight incubation at 37 °C was considered the 

MIC. 

Furthermore, the MBC method was used to test bactericidal activity. Ten µl of the wells in which the 

MIC was observed and 2-fold of the MIC were transferred to a NA and incubated at 37 °C for 24 hours. 

The MBC is the lowest concentration at which no bacterial colonies form on the NA (40). All tests were 

done in triplicate. 

Antibiofilm Inhibition Evaluation 

Biofilm formation was determined using the microtiter plate method to investigate the efficacy of the 

Nef peptides (41, 42). The P. aeruginosa PTCC 1074 suspension was incubated overnight for 48 hours at 

37 ℃ with 20 µM of the best  Nef peptides (Nef peptide-1, Nef peptide-10, Nef peptide-14, Nef peptide-16, 

Nef peptide-18 and Nef peptide-19) in 48-well microplates (SPL Life Sciences, South Korea). After 

incubation, the microplates were washed with physiological saline to remove the unbound and dead cells 

and allowed to dry at room temperature for 10 minutes. Then, they were stained by adding 250 µL of 0.1% 

crystal violet solution for 10 minutes and stored at room temperature to dry and stabilize the biofilm. Finally, 

200 µL of 95% ethanol was added for 10 minutes and the qualification of biofilm production was measured 

using a microplate reader (Awareness Technology ChroMate® Microplate Reader, America) at OD595nm. 

Statistical Analysis  

The data of treated groups and control were compared by two-way ANOVA with a p-value of less than 

0.05. These statistical analyses were performed using GraphPad Prism software (version 9.3.1.471, San 

Diego, CA, USA). All tests were carried out in triplicate, and results were presented as mean ± SD. 

Results 

Computational Analysis 

Nef-Peptide 3D Structure Prediction and Verification 

Prediction of the 3D structures of Nef peptides by PEPFOLD3.5 yielded ten models for each Nef 

peptide. The PEPFOLD model1 for all Nef peptides was found to be as the best model with the more 

negative sOPEP (Optimized Potential for Efficient Structure Prediction) energy. The final selected Nef 
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peptide models had sOPEP energy ranging from -34.003 to -15.9598. In addition, the template modeling 

(TM) values of the Nef peptides models ranged from 0.186 to 0.642 (Table 2). TM scores above 0.5 to 1 

were considered perfect, and scores below 0.17 were considered generally weak. The Z-score and 

Ramachandran plot statics of all optimized Nef peptide models were within an acceptable region (Table 2). 

 

Table 2. Outputs of the structural models of the Nef peptides from PEP-FOLD3.5, PROCHECK and 

ProSA web servers. 

Nef-Peptides sOPEP TM 

Score 

Residues in 

most favored 

regions (%) 

Residues in 

Additional allowed 

regions (%) 

Residues in 

disallowed 

regions (%) 

Z-

score 

Nef-Peptide-1 23.8396 0.377 86/7 13/3 0 -0.53 

Nef-Peptide-2 25.4893 0.528 86/7 13/3 0 -1/40 

Nef-Peptide-3 21.7697 0.449 86/7 13/3 0 -1/35 

Nef-Peptide-4 18.1814 0.384 82/4 17/6 0 -1/16 

Nef-Peptide-5 24.3305 0.520 100 0 0 -0/9 

Nef-Peptide-6 31.9092 0.619 100 0 0 -1/03 

Nef-Peptide-7 15.9598 0.273 92/3 7/7 0 -0/1 

Nef-Peptide-8 31.7345 0.407 86/7 13/3 0 -1/03 

Nef-Peptide-9 24.426 0.617 86/7 13/3 0 -0/81 

Nef-Peptide-10 34.003 0.599 88/2 11/8 0 -1/75 

Nef-Peptide-11 26.1485 0.217 92/9 7/1 0 -0/1 

Nef-Peptide-12 25.4436 0.186 50 50 0 -0/63 

Nef-Peptide-13 22.6902 0.226 85/7 14/3 0 -0/34 

Nef-Peptide-14 26.5359 0.428 93/3 6/7 0 -1/37 

Nef-Peptide-15 20.6712 0.378 81/2 18/8 0 -2/4 

Nef-Peptide-16 16.8204 0.317 66/7 33/3 0 -1/81 

Nef-Peptide-17 27.9416 0.340 70/6 29/4 0 -0/39 

Nef-Peptide-18 30.7537 0.555 88/2 11/8 0 -0/96 

Nef-Peptide-19 20.4103 0.642 91/7 8/3 0 -1/61 

According to PROCHECK results, 91.7% of Nef peptide-19 residues were in the most preferred region, 

8.3% were in additional allowed regions, and no residues were in disallowed regions. Cross-validation by 

ProSA also indicated that all PEPFOLD models had a Z-score in the negative range and within the range of 

experimentally validated proteins (Table 2); therefore, they were considered accurate (27, 28). 

The Ramachandran and Z-score plots of the Nef-Peptide-19 model are illustrated in Figures 2a and 2b, 

respectively. Nef peptide-19 has a Z-score of -1.61 (within the experimentally validated regions), 11 amino 

acid residues in the preferred regions and none in the disallowed regions. 

AMP Prediction 

The antimicrobial activity of all Nef peptides was predicted using three AMP predictor web servers: 

AntiBP2, ClassAMP, and Dbaasps. These web servers utilize full residue analysis to predict antimicrobial 

properties using machine learning algorithms. The results are annotated in terms of antibacterial, antiviral 

and antifungal activities. However, the present study focused on antibacterial activity. Based on the results, 
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except Nef peptide-3, Nef peptide-9, Nef peptide-14, and Nef peptide-15, all other Nef peptides were 

predicted to be AMPs by at least one of the servers (Table 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. a) Ramachandran plot for Nef-Peptide-19. Nef-Peptide-19 has 11 amino acid residues in the preferred regions and none in 

the disallowed regions. b) Nef-Peptide-19 has a z-score of −1.61 and is within the experimentally validated regions. 

Table 3. Antimicrobial prediction results using AntiBP2, ClassAMP and Dbaasps web servers. 

Properties Dbaasps ClassAMP (SVM) ClassAMP (RF) AntiBP2 Nef-Peptides 

Antimicrobial 

activities 
Yes Antifungal laatencabitnA No Nef-Peptide-1 

 No Antiviral laatencabitnA No Nef-Peptide-2 

 No Antifungal Antifungal No Nef-Peptide-3 

 No Antiviral laatencabitnA No Nef-Peptide-4 

 No Antiviral laatencabitnA laatencabitnA Nef-Peptide-5 

 No Antifungal laatencabitnA No Nef-Peptide-6 

 No Antifungal laatencabitnA No Nef-Peptide-7 

 No Antifungal laatencabitnA Antibacterial Nef-Peptide-8 

 No Antifungal Antifungal No Nef-Peptide-9 

 No Antiviral laatencabitnA No Nef-Peptide-10 

 No Antifungal laatencabitnA No Nef-Peptide-11 

 No Antiviral laatencabitnA No Nef-Peptide-12 

 No Antifungal laatencabitnA No Nef-Peptide-13 

 No Antifungal Antifungal No Nef-Peptide-14 

 No Antifungal Antiviral No Nef-Peptide-15 

 No laatencabitnA laatencabitnA No Nef-Peptide-16 

 No Antifungal laatencabitnA No Nef-Peptide-17 

 No Antifungal laatencabitnA No Nef-Peptide-18 

 No Antifungal laatencabitnA No Nef-Peptide-19 

Note; Yes means AMP, and No implies non-AMP. 
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Nef-Peptide Physiochemical Properties 

The prediction of the physicochemical properties of the Nef peptides showed different values for the 

net charge (from -5 to +4 for Nef-peptide-6 and Nef-peptide-1, respectively), the hydropathicity index 

(between -1.13 and 0.24) and the amphipathicity index (higher than 0.8 for Nef peptide-1, Nef peptide-9, 

Nef peptide-14, Nef peptide-18 and Nef peptide-19) (43) (Table 4).  

 

Table 4. Physicochemical properties of the Nef peptides predicted with the dPABBs web server. 

Nef-Peptides Hydropathicity Amphiphilicity Net Hydrogen Charge pI MW 

Nef-Peptide-1 -0.90 0.80 1.15 4.00 11.73 2303.96 

Nef-Peptide-2 -0.94 0.62 1.05 1.00 9.80 2211.76 

Nef-Peptide-3 -0.84 0.63 0.80 -0.50 5.50 2007.42 

Nef-Peptide-4 -0.48 0.44 0.85 0.50 7.10 2001.41 

Nef-Peptide-5 0.24 0.13 0.65 -1.00 4.00 1994.43 

Nef-Peptide-6 -0.17 0.38 0.55 -5.00 3.52 2193.65 

Nef-Peptide-7 -0.52 0.44 0.65 -3.00 4.10 2318.92 

Nef-Peptide-8 0.14 0.75 0.55 0.50 7.10 2125.81 

Nef-Peptide-9 -1.13 0.94 1.10 0.50 7.11 2292.90 

Nef-Peptide-10 -0.94 0.58 1.15 1.00 7.25 2577.17 

Nef-Peptide-11 -0.94 0.20 0.75 -0.50 5.09 2484.03 

Nef-Peptide-12 -0.88 0.18 0.75 0.00 6.18 2351.90 

Nef-Peptide-13 0.02 0.37 0.60 0.00 6.38 2340.03 

Nef-Peptide-14 -1.02 0.80 0.80 -2.00 4.59 2261.82 

Nef-Peptide-15 -0.72 0.70 0.80 0.00 6.05 2202.76 

Nef-Peptide-16 -0.27 0.39 0.65 -2.00 4.73 2245.84 

Nef-Peptide-17 -0.85 0.56 1.00 -3.00 4.30 2469.00 

Nef-Peptide-18 -0.97 0.78 1.05 0.50 6.31 2533.09 

Nef-Peptide-19 -1.09 0.87 0.93 1.50 7.31 1880.33 

Prediction of the secondary structure of Nef peptides using YASARA software indicated that 86.7% 

of the conformation of Nef peptide19 was α-helix (Table 5). The α-helix structure is the preferred 

conformation in AMPs and is better able to fit into the membrane (44). 

Molecular Docking Analysis 

The results of the molecular docking study for the two target proteins MexB and PqsR with the 19 Nef 

peptides are presented in Tables 7 and 8, respectively. The HADDOCK results of the MexB protein with 

the 19 Nef peptides showed that Nef-Peptide-19 has the highest HADDOCK score of −136.1, with a Z-

score of −1.6 and an RMSD of 0.6 at the DBP active site (Table 6). HADDOCK grouped 128 structures 

into 13 clusters, describing 64 % of the generated water-refined models. 

The HADDOCK results of PqsR with Nef peptides demonstrated that Nef peptide-19 yielded the 

highest HADDOCK score of -129.4 ± 2.9, with a Z-score of −1.3 and an RMSD of 0.3 at the active site of 

PqsR's (Table 7). HADDOCK clustered 185 structures in 4 clusters, corresponding to 92% of the generated 

water-refined HADDOCK models. 

Peptide-Protein Complex Interaction Analysis  
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Table 5. Content of the secondary structure with the YASARA software. 86.7% of the Nef peptide-19 structure 

is α-helix. 

Nef-Peptides α-Helix (%) Random Coil (%) β Turn (%) β Sheet (%) 

Nef-Peptide-1 35 65 00 00 

Nef-Peptide-2 65 35 00 00 

Nef-Peptide-3 45 35 20 00 

Nef-Peptide-4 40 60 00 00 

Nef-Peptide-5 65 35 00 00 

Nef-Peptide-6 80 20 00 00 

Nef-Peptide-7 30 50 20 00 

Nef-Peptide-8 60 20 20 00 

Nef-Peptide-9 65 35 00 00 

Nef-Peptide-10 75 25 00 00 

Nef-Peptide-11 00 60 40 00 

Nef-Peptide-12 00 80 20 00 

Nef-Peptide-13 00 80 20 00 

Nef-Peptide-14 50 50 00 00 

Nef-Peptide-15 55 25 20 00 

Nef-Peptide-16 30 50 20 00 

Nef-Peptide-17 40 40 20 00 

Nef-Peptide-18 70 30 00 00 

Nef-Peptide-19 86.7 13.3 00 00 

 

Table 6. Nef peptides HADDOCK 2.4 results interacting with MexB protein of P. aeruginosa. 

Nef-

Peptides 

HADD

OCK 

score 

CLUS

TER 

SIZE 

RMSD 
VW 

energy 

Electrosta

tic energy 

Desolvati

on energy 

Restraint

s violation 

energy 

BSA 
Z-

Score 

Nef-

Peptide-1 

-76.0 ± 

 1.5 
16 

5.9 ± 

 0.1 

-56.5 ± 

 4.3 

-183.5 ±  

38.6 

-7.7 ±  

2.5 

248.4 ± 

 48.7 

1756.5 ± 

 29.4 
-1.8 

Nef-

Peptide-2 

-82.8 ± 

 7.1 
8 

0.3 ± 

 0.2 

-57.4 ± 

 4.4 

-227.8 ±  

33.6 

4.4 ±  

1.6 

158.6 ±  

48.6 

1820.0 ± 

 41.3 
-2.6 

Nef-

Peptide-3 

-72.5 ± 

 6.1 
16 

4.4 ± 

 0.0 

-47.9 ± 

 2.8 

-206.8 ± 

 29.7 

-5.5 ±  

2.1 

222.0 ±  

11.2 

1645.3 ± 

 30.9 
-2.0 

Nef-

Peptide-4 

-70.6 ± 

 5.0 
19 

4.5 ± 

 0.1 

-48.6 ± 

 7.9 

-253.3 ± 

 50.0 

10.0 ± 

 3.5 

186.2 ±  

54.4 

1673.5 ± 

 39.5 
-2.0 

Nef-

Peptide-5 
-77/3 12 

1/0± 

 0/1 

-63/2 ± 

 5/0 

-97/8 ±  

4/5 

-10/7 ±  

1/5 

161/4 ± 

 32/2 

1607/8 

± 

 105/2 

-1/6 

Nef-

Peptide-6 

-104.2 ± 

 6.4 
14 

0.6 ± 

 0.0 

-66.1 ± 

 2.6 

-210.7 ± 

 34.6 

-11.2 ± 

2.8 

152.2 ± 

10.8 

2134.5 ± 

 43.8 
-2.2 

Nef-

Peptide-7 

-89.7 ± 

 4.2 
19 

1.5 ± 

 0.1 

-64.1 ± 

 3.9 

-259.1 ± 

 5.2 

1.4 ±  

3.2 

248.8 ±  

78.3 

1996.1 ± 

 52.5 
-1.8 
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Nef-

Peptide-8 

-83.9 ± 

 5.1 
31 

0.3 ± 

 0.2 

-63.9 ± 

 6.0 

-187.9 ± 

 35.6 

-2.9 ±  

2.5 

205.4 ±  

43.5 

1762.8 ± 

 86.0 
-2.2 

Nef-

Peptide-9 

-83.5 ± 

 6.4 
7 

6.1 ± 

 0.1 

-57.5 ± 

 3.0 

-292.5 ± 

 58.5 

14.4 ±  

4.6 

181.1 ± 

 39.5 

2005.4 ± 

 125.2 
-2.0 

Nef-

Peptide-10 

-93.4 ± 

5.2 
18 

0.9 ± 

 0.0 

-59.7 ± 

 6.2 

-237.2 ± 

 37.4 

-12.8 ±  

0.6 

266.2 ±  

43.2 

1848.9 ± 

 46.7 
-1.3 

Nef-

Peptide-11 

-92.6± 

9.4 
10 

0.3 ± 

 0.2 

-78.2 ± 

 3.3 

-105.5 ± 

 17.9 

-28.2 ± 

 6.6 

348.9 ± 

 49.0 

2027.1 ± 

 63.8 
-1.9 

Nef-

Peptide-12 

-83.9 ± 

1.2 
8 

1.5 ± 

 0.0 

-74.5 ± 

 4.0 

-102.8 ± 

 11.2 

-8.6 ±  

0.9 

197.0 ±  

60.2 

1737.7 ± 

 18.6 
-1.8 

Nef-

Peptide-13 

-96.1 ± 

10.2 
27 

0.3 ± 

 0.2 

-76.6 ± 

 2.4 

-93.9 ± 

 14.8 

-25.3 ±  

3.1 

245.6 ±  

80.3 

1870.5 ± 

 31.5 
-2.0 

Nef-

Peptide-14 

-111.8 ± 

2.6 
12 

0.5 ± 

 0.3 

-76.3 ± 

 2.6 

-279.9 ± 

 27.4 

6.7 ±  

1.2 

138.1 ±  

23.1 

2174.1 ± 

 28.1 
-2.8 

Nef-

Peptide-15 

-76.6 ± 

1.6 
27 

0.8 ± 

 0.2 

-64.1 ± 

 2.3 

-109.1 ± 

 17.4 

-9.6 ±  

1.3 

189.8 ± 

 45.2 

1970.6 ± 

 122.8 
-1.7 

Nef-

Peptide-16 

-87.0 ± 

 5.5 
11 

0.3 ± 

 0.2 

-60.9 ± 

 6.9 

-203.6 ± 

 50.3 

-11.9 ± 

 3.4 

265.4 ± 

 63.8 

1806.6 ± 

 99.3 
-1.3 

Nef-

Peptide-17 

-102.0± 

 4.9 
17 

1.8 ± 

 0.0 

-83.1 ± 

 3.6 

-153.1 ± 

 32.1 

-7.8 ±  

1.7 

195.5 ± 

 20.7 

2035.1 ± 

 49.9 
-1.6 

Nef-

Peptide-18 

-124.5± 

 3.4 
33 

0.3 ± 

 0.2 

-61.0 ± 

 4.5 

-335.9 ± 

 42.0 

-12.3 ± 

 5.2 

159.9 ±  

51.4 

2085.7 ± 

 31.7 
-2.6 

Nef-

Peptide-19 

-136.1± 

 1.7 
20 

0.6 ± 

 0.3 

-74.9 ± 

 4.2 

-258.5 ± 

 27.9 

-9.5 ±  

1.0 

189.6 ±  

58.4 

1668.6 ±  

61.0 
-1.9 

Note, RMSD: Root Mean Square Deviation, VW energy: Van der Waals energy, BSA: Buried Surface Area 

 

Table 7. Nef peptides HADDOCK 2.4 results interacting with the PqsR protein of P. aeruginosa. 

Nef-

Peptides 

HADDO

CK 

score 

Cluste

r size 

RMSD VW 

energy 

Electrost

atic 

energy 

Desolva

tion 

energy 

Restraints 

violation 

energy 

BSA Z-Score 

Nef-

Peptide-1 

-91.6 ± 

11.3 
8 

0.7 ± 

0.4 

-49.5 ± 

8.3 

-117.8 ± 

 30.8 

-25.2 ± 

1.6 

67.3 ± 

17.5 

67.3 ± 

17.5 

-1.6 

Nef-

Peptide-2 

-78.9 ± 

3.9 
101 

0.6 ± 

0.4 

-31.8 ± 

3.1 

-223.4 ±  

28.6 

-10.6 ± 

2.1 

82.1 ± 

27.7 

1344.2 ± 

50.2 

-1.3 

Nef-

Peptide-3 

-80.3 ± 

1.8 
95 

0.2 ± 

0.1 

-53.2 ± 

3.8 

-106.8 ±  

4.8 

-14.4 ±  

1.3 

86.0 ±  

31.0 

1662.8 ± 

51.1 

-2.2 

Nef-

Peptide-4 

-86.2 ± 

3.5 
42 

0.4 ±  

0.2 

-41.6 ± 

1.8 

-265.6 ±  

16.2 

0.0 ± 

1.7 

84.5 ±  

24.3 

1486.7 ± 

66.6 

-2.7 

Nef-

Peptide-5 

-79.0 ± 

0.9 
56 

3.4 ± 

0.3 

-59.0 ± 

5.0 

-87.2 ± 

13.4 

-14.3 ± 

3.0 

116.9 ± 

5.6 

1559.6 ± 

86.0 

-1.8 

Nef-

Peptide-6 

-79.0 ± 

0.9 
56 

3.4 ± 

0.3 

-59.0 ± 

5.0 

-87.2 ± 

13.4 

-14.3 ± 

3.0 

116.9 ± 

5.6 

1559.6 ± 

86.0 

-1.8 

Nef-

Peptide-7 

-71.6 ± 

2.8 
6 

2.7 ± 

0.0 

-42.5 ± 

3.1 

-144.0 ±  

23.1 

-10.9 ±  

1.2 

105.7 ± 

22.2 

1534.8 ± 

34.3 

-1.8 

 [
 D

O
I:

 1
0.

22
08

8/
IJ

M
C

M
.B

U
M

S.
13

.1
.4

6 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
cm

ed
.o

rg
 o

n 
20

24
-1

0-
06

 ]
 

                            10 / 18

http://dx.doi.org/10.22088/IJMCM.BUMS.13.1.46
http://ijmcmed.org/article-1-2040-en.html


Antibacterial activities of HIV-1 Nef-Peptides against Pseudomonas aeruginosa/ Koosehlar E, et al                                                           56 

International Journal of Molecular and Cellular Medicine. 2024; 13(1): 46-63 

Nef-

Peptide-8 

-72.5 ± 

3.8 
16 

0.9 ± 

0.3 

-31.4 ± 

3.2 

-211.8 ±  

40.5 

-5.5 ± 

4.3 

67.9 ± 

17.4 

1344.9 ± 

41.4 

-1.8 

Nef-

Peptide-9 

-78.1 ± 

3.5 
33 

0.8 ± 

0.5 

-32.1 ± 

5.6 

-304.3 ± 

21.6 

3.4 ± 

1.6 

115.3 ± 

24.2 

1566.8 ± 

84.9 

-1.2 

Nef-

Peptide-10 

-123.4 ± 

7.5 
109 

0.3 ± 

0.2 

-58.6 ± 

3.4 

-191.1 ± 

 9.9 

-35.9 ±  

2.3 

92.6 ± 

24.9 

1695.9 ± 

69.4 

-2.1 

Nef-

Peptide-11 

-95.4 ± 

3.2 
48 

0.3 ± 

0.2 

-53.1 ±  

4.0 

-110.8 ±  

14.6 

-27.9 ± 

2.1 

77.7 ±  

21.1 

1618.4 ± 

27.8 

-2.1 

Nef-

Peptide-12 

-100.2 ± 

5.1 
52 

0.4 ±  

0.2 

-65.0 ± 

3.9 

-78.8 ± 

17.9 

-24.9 ± 

3.1 

54.7 ± 

29.8 

1652.7 ± 

87.0 

-2.3 

Nef-

Peptide-13 

-101.2 ± 

2.2 
10 

0.6 ± 

0.4 

-58.6 ± 

7.5 

-120.1 ± 

43.3 

-27.9 ±  

2.2 

94.0 ±  

15.4 

1742.5 ± 

78.1 

-1.6 

Nef-

Peptide-14 

-67.0 ± 

7.6 
23 

0.9 ± 

0.8 

-49.2 ± 

2.7 

-107.5 ± 

38.7 

-6.2 ± 

3.1 

99.2 ± 

30.4 

1457.3 ± 

49.7 

-1.6 

Nef-

Peptide-15 

-90.5 ± 

1.5 
75 

0.3 ± 

0.2 

-45.7 ±  

1.4 

-216.9 ± 

18.4 

-13.8 ± 

1.3 

123.5 ± 

25.0 

1606.9 ± 

72.2 

-1.8 

Nef-

Peptide-16 

-96.6 ± 

7.6 
34 

0.4 ± 

0.3 

-50.9 ± 

4.0 

-212.5 ± 

22.1 

-9.0 ± 

0.8 

59.0 ± 

12.8 

1716.9 ± 

27.9 

-2.3 

Nef-

Peptide-17 

-83.9 ± 

4.6 
16 

0.4 ± 

0.2 

-41.8 ± 

3.2 

-195.7 ± 

7.0 

-9.7 ± 

1.7 

67.7 ±  

31.5 

1548.7 ± 

34.3 

-1.7 

Nef-

Peptide-18 

-112.5± 

2.1 
95 

0.3 ± 

0.2 

-59.5 ± 

7.8 

-134.7 ± 

29.5 

-33.9 ± 

3.9 

79.0 ±  

28.1 

1778.8 ± 

24.6 

-2.5 

Nef-

Peptide-19 

-129.4 ± 

2.9 
62 

0.3 ± 

0.3 

-46.6 ± 

7.3 

-280.7 ± 

15.9 

-25.8 ± 

3.4 

17.9 ±  

16.4 

1486.2 ± 

35.5 

-1.3 

The complex analysis of MexB protein with Nef peptide-19 indicated that 24 residues of MexB binding 

site interacted with 13 residues of Nef peptide-19. The PDBsum results revealed two ionic, ten hydrogenic 

and 117 van der Waals interactions in the peptide-protein complex (Figure 3a). The 3D interactions of the 

MexB binding pocket were illustrated in Discovery Studio (Figure 3b). Among these amino acids, R128, 

D174, Q176, S180 and D760 of the active site of vital MexB bonded with the residues of Nef peptide-19. 

Furthermore, H2 and V3 of Nef peptide-19 were in contact with 6 and 4 residues of the active site of MexB, 

respectively (Figure 3c). Therefore, these two residues of Nef peptide-19 are essential for suppressing MexB 

protein. 

Complex analysis of the active sites of Nef peptide-19 and MexB revealed 129 interactions: two ionic, 

ten hydrogenic and 117 van der Waals interactions. The critical residues of the active site of MexB (R128, 

D174, Q176, S180, D760) were involved in hydrogen bonds with Nef peptide-19 residues. 

Docking analysis of the PqsR protein and Nef peptide-19 showed that 12 residues of Nef peptide-19 

were bound to the 19 residues of the PqsR active site through 120 interactions (two were ionically bound, 

10 were hydrogen bonded, and 108 were not bound) (Figure 4a). 

The 3D interactions of the PqsR binding pocket were visualized in Discovery Studio (Figure 4b). 

Among these residues, seven of the essential amino acids of the active site of PqsR, I149, I186, L189, L207, 

I236, Y258, and T265 (45), were suppressed by the residues of Nef peptide-19 (Figure 4c). 
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Fig. 3. Analysis of the MexB_Nef peptide-19 complex. a Schematic representation of the MexB binding pocket and the Nef peptide-

19 complex. b Crystal structure of MexB (PDB: 6IIA) bound to Nef-Peptide-19 (yellow). c 2D diagram of the interactions between 

Nef peptide-19 and MexB.  

Analysis of in vitro evaluations 

Assessment of Antibacterial Activity 

The results of antibacterial evaluation of Nef peptides against P. aeruginosa (PTCC 1074) revealed 

that six Nef peptides had significant MIC values, as shown in Table 8. Among them, Nef-Peptide-19 was 
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the most effective peptide, with MIC and MBC values of 10 µM (18.8 µg/mL) and 20 µM (37.6 µg/mL), 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Analysis of the interactions between PqsR and Nef peptide-19. a) Schematic representation of the PqsR binding site with 

the Nef peptide-19 complex. b) Crystal structure of PqsR (PDB: 4JVD) bound to Nef peptide-19 (yellow). c 2D diagram of the Nef 

peptide-19 and PqsR interactionsL. 

 

Table 8. Antibacterial activities of the best Nef peptides by MIC test. 

Nef-Peptides MIC values (µM) 

Nef-Peptide-1 20 (37.6 µg/mL) 

Nef-Peptide-10 20 (37.6 µg/mL) 

Nef-Peptide-14 20 (37.6 µg/mL) 

Nef-Peptide-16 20 (37.6 µg/mL) 

Nef-Peptide-18 20 (37.6 µg/mL) 

Nef-Peptide-19 10 (18.8 µg/mL) 

Assessment of Antibiofilm Activity 

Antibiofilm evaluation of the top six Nef peptides against P. aeruginosa (PTCC 1074) showed that 

Nef peptide-19 was the most active peptide. The percentage inhibitory effect of Nef peptide-19 on biofilm 

formation was 56.23 at the concentration of 20 µM (37.6 µg/mL). All antibiofilm activities of Nef peptides 

are demonstrated in Figure 5. 
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Fig. 5. The percentage of biofilm formation of P.aeruginosa in the presence of the top six Nef peptides at 20 µM. Values were 

presented as mean and standard deviation (±SD) from triplicate independent assays (two-way ANOVA, P-value<0.05). 

Discussion 

The increase in MDR bacteria has led to a decrease in the efficacy of conventional antibiotics in recent 

years (46). P. aeruginosa is already resistant to various antibiotics, including ciprofloxacin, gentamicin, 

imipenem, fluoroquinolone, and ceftazidime (47). The use of AMPs instead of conventional antibiotics has 

been considered a new strategy to combat MDR bacteria (48). Researchers have recently focused on viral-

derived peptides to assess their antimicrobial activity. For instance, pepR (isolated from the dengue virus 

capsid protein) is active against Staphylococcus aureus biofilms (49), M2 AH (isolated from the influenza 

virus M2 protein) is active against influenza virus infections (50), and P24-derived peptides (isolated from 

the HIV-1 virus P24 protein) are active against the HIV-1 virus (51). 

New AMPs can be developed by using evolved prediction tools that search the protein sequences of 

different organisms (52). Some peptides derived from HIV-1 proteins, such as gp41, gp120 and p24, have 

been investigated for their potential as antimicrobial agents (51, 53). In the current study, bioinformatics 

and laboratory techniques were used to assess the antimicrobial activities of 19 peptides from the HIV-1 

Nef protein against P. aeruginosa. To our knowledge, HIV-1 Nef peptides had moderate to strong 

antibacterial activities against P. aeruginosa. 

Moreover, in the present study, 19 Nef peptides with two pathogenic proteins (MexB and PqsR) were 

docked via HADDOCK. The 2021 study by Dong et al. on the MexB protein revealed that targeting MexB 

with the BING peptide (isolated from Oryzias latipes) sensitizes MDR bacteria, including P. aeruginosa, 

to antibiotics (54). The molecular docking results of the current study showed that Nef peptide-19 fitted into 

the binding site MexB via several residues, including two crucial residues in DBP, R128 and S180 (10, 55) 

with a HADDOCK score of -136.1 ± 1.7. Compounds with a molecular mass greater than 1000 (such as 

Nef Peptide-19) can bind to the DBP of MexB and disrupt EPS function (55). PqsR is another pathogenic 
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protein of P. aeruginosa that has been described in previous studies as a potential target for disrupting the 

QS system and reducing the expression of several virulence factors (56, 57). Our docking analysis revealed 

that Nef peptide-19 has the highest affinity for the PqsR binding site and contacts key residues such as I149, 

I186, L189, L207, L208, I236, Y258 and T268 (45, 58) with a HADDOCK score of -129.4 ± 2.9. 

Several AMPs have been studied in vitro to suppress P. aeruginosa infections (59, 60). In 2020, Li et 

al. reported the antibacterial activity of CM4, a cationic AMP from the silkworm Bombyx mori, against P. 

aeruginosa with an MIC value of 18 µM (61). 6K-F17, a peptide synthesized by Beaudoin et al. in 2018, 

showed MIC values of 2-256 µg/ml against several species of P. aeruginosa (62). Compared to the reported 

results, Nef peptide-19 showed considerable bacteriostatic and bactericidal activities against P. aeruginosa 

with MIC and MBC values of 10 µM (18.8 µg/ml) and 20 µM (37.6 µg/ml), respectively. In 2022, Aflakian 

et al. suggested that three novel synthesized AMPs (WSF, FASK, YDVD) at a concentration of 800 µg/ml 

could  inhibit the biofilm production of P. aeruginosa (63). Furthermore, Gopal et al. reported in 2013 that 

NRC-16 affects the production of P. aeruginosa from 2.17 to 17.4 µg/ml (64). The results of the ongoing 

study revealed that Nef peptide-19 at a concentration of 20 µM (37.6 µg/ml) was able to inhibit 53.23% of 

biofilm formation. Based on these results, we hypothesize that Nef peptide-19 could be a potential new 

AMP to fight bacterial infections. 

In order to advance the development of Nef peptides as potential therapeutics against P. aeruginosa, 

certain limitations need to be addressed in future research. These could include evaluating the efficacy of 

Nef peptides against a broader range of clinical isolates, assessing their antibacterial and antibiofilm 

activities using an in vivo model, and testing the stability of the AMPs under physiological conditions to 

ensure their safety. 
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