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Melanocortin- 4 receptor (MC4R) and agouti- relgpegtide (AgRP) are involved in energy homeostasiats.
According to MC4R and AgRP effects on luteinizingrimone (LH) secretion, they may influence the estro
cycle of rats. Therefore, the aim of this study wasmvestigate the expression of MC4R and AgRP rARIdt
different stages of estrous cycle in the rat's hlgptamus. The estrous cycle stages (proestrusisestetestrus
and diestrus) were determined in 20 adult femakeusing vaginal smears. The rats were dividedfmto equal
groups (n=5). Four ovariectomized rats were seteatecontrols two weeks after surgery. Using riale PCR,
relative expressions (compared to controls) of MGtiRl AQRP mRNAs in the hypothalamus of rats were
compared in four different groups of estrous cyclde relative expression of MC4R mRNA in the
hypothalamus of female rats during proestrus stea® higher than those in other stages (P=0.0019pilzea
lower mean of relative expression of AQRP mRNA ratgstrus stage, the relative expression of AQRP mEN
the four stages of estrous cycle did not differ®5). In conclusion, changes in the relative esgion of
MC4R and AgRP mRNAs in four stages of rat estroydecindicated a stimulatory role of MC4R in the
proestrus and preovulatory stages and an inhibitoley of AQRP in gonadotropin releasing hormone REh
and LH secretions.
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I\/l elanocortin-4 receptor (MC4R) is the between appetite and reproduction (2). MC4R is
cognate receptor fora- melanocyte expressed in arcuate nuclei (ARC), periventricular
stimulating hormone otMSH) (1). This receptor nuclei (PVN), medial preoptic area (MPO) and
belongs to the melanocotrin receptors and is one of preoptic area (POA). These regions are involved in
the members of G protein-coupled receptors that reproduction and regulate appetite (3, 4). Alpha-
activates adenylate cyclase and can be a mediator melanocyte stimulating hormone is effective in
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erection (5) and decreases luteinizing hormone
(LH) in rats (6). Melanotan-11 (MT-II) -agonist of
MC4R- is effective in the erection of men and
treatment of its abnormalities (7).

Agouti-related peptide (AgRP) is the
neuropeptide with 132 amino acids that is
expressed in the ARC of mice (8) and sheep (9). In
some species, AgRP neurons are involved in energy
balance (10). AgRP is an appetite stimulus (11) and
increases during the lack of energy (12).
Intracerebroventricular (ICV) injection of AgRP,
increases food intake and inhibiisMSH in mice
(13). Mice deficient in the MC4R expression (14)
or high expression of AgQRP (15) are fat. Changes in
the relative expression of MC4R and AgRP
MRNAs during long term malnutrition of rat
indicate a stimulatory role of MC4R and AgRP in
regulating energy balance in ARC of rat
hypothalamus (16). Various hormones such as
insulin, leptin and glucocorticoids can change
AgRP expression during homeostasis (11).
Moreover, AgRP in pregnancy and MCA4R in
lactation in ARC of rats control the energy
homeostasis (17).

Many neurons in the ARC co-express AgRP
and Neuropeptide Y (NPY) which is another
appetizer peptide (18). NPY is also effective in
reproduction (19). It has been shown that NPY
neurons have synaptic contact with gonadotropin
releasing hormone (GnRH) neurons in the POA
(20). ICV injection of NPY, inhibits LH secretion
in rats (21). Moreover, NPY neuron termini which
synthesized AgRP, synapse with GnRH neurons
(22). Both NPY and AgRP inhibit LH surge (3, 23).
Estradiol decreases NPY and AgRP expression in
the ARC as well as NPY expression in the PVN of
ovariectomized (OVX) rats (24). In addition, the
low level of estradiol in OVX rat, leads to the up-
regulation of NPY and AgRP in the hypothalamus
(25). AgRP termini are located in the MPO which
consists of GnRH neurons and ICV injection of
AgRP increases GnRH, LH, follicle stimulating
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hormone (FSH) and testosterone in male rat but do
not have any direct effect on anterior pituitarg).2
AgRP inhibitor also has effect on reproductive axis
and ICV injection of AgRP inhibitor leading to LH
decline in OVX monkey (23).

According to the effect of MC4R and AgRP
on LH secretion, there are likely to affect estrous
cycle in rats. Therefore, the aim of the preseundst
was to investigate MC4R and AgRP mRNAs
expression in the hypothalamus during the estrous
cycle of rat.

Materials and M ethods

Twenty-four adult (3-4 months old) female
Sprague-Dawley ratsRéttus norvegicus) weighing
170-220 g were used in this study. The rats were
randomly selected and housed in the laboratory
animal center of Shiraz University of Medical
Sciences, Shiraz, Iran under controlled temperature
(22 °C) and light (12:12 light to dark ratio; lightn
at 7:30 am) conditions. Rats were treated humanely
and in compliance with the recommendations of the
Animal Care Committee of the Shiraz University of
Medical Sciences. All experimental procedures
were carried out between 12.00-2.00 pm. Vaginal
smears were prepared for the identification of the
phases of the estrous cycles of the 20 intact rats.
Five rats were assigned to each phase of the cycle.

The control group comprised four randomly
selected ovariectomized rats. The rats were
anesthetized by an intraperitoneal injection of
ketamine (100 mg/kg, Woerden, Netherlands) and
xylazine (7 mg/kg, Alfazyne, Woerden, Nether-
lands), then ovariectomized through a ventral
midline incision. Further procedures were under-
taken after a two-week recovery period. The cyclic
and ovariectomized rats were decapitated, brains
dissected out immediately, and the entire hypo-
thalamuses were dissected. The hypothalamus
samples were frozen in liquid nitrogen and stored
at-80 °C. RNA extraction, DNase treatment, cDNA
synthesis and relative real-time PCR procedure
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were performed as described elsewhere (27).
Primers were designed with Allele ID 7 software
for the reference gene, AgRP (NM_033650.1) and
MC4R (NM_013099.2). The rat glyceraldehyde-3-
phosphate (GAPDH) gene
(M32599) was used as reference gene for data

dehydrogenase

normalization (Table 1).

For quantitative real-time PCR data, the
relative expression of AgRP and MC4R was
calculated based on the threshold cycle (CT)
method. CT for each sample was calculated using
Line-gene K software (28). Fold expression of the
target mMRNAs over reference values was calculated
by the equation 2ACT (29), where ACT s
determined by subtracting the corresponding
GAPDH CT value (internal control) from the
specific CT of the target (AgRP or MCARAACT
was obtained by subtracting th&CT of each
experimental sample from that of the calibrator
sample (ovariectomized rats). Data on the relative
expression of AgRP and MC4R genes were
subjected to the test of normality. Analysis of
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variance for both variables were performed using
Proc GLM (SAS, 2002) followed by mean
comparison by Duncan’s multiple range test.
P<0.05 was considered as significant. The mean of
the group and standard errors have been reported.

The expression of MC4R mRNA in the
hypothalamus of female rats at different phases of
the estrous cycle is shown in figure 1. There was
higher expression of MC4R mRNA during the
proestrus phase compared to other phases of the
cycle (P=0.001). The expression of MC4R mRNA
during the estrus, metestrus and diestrus phades di
not differ significantly. The expression of AgRP
MRNA in the hypothalamus of female rats in the
different phases of the estrous cycle is shown in
figure 2. The expression of AGRP mRNA did not
significantly differ during the estrous cycle
(P>0.05). Negative correlations between AgRP
MRNA and MC4R mRNA during the estrous cycle
were not significantly different (r= -0.14, P> 0)05

Table 1. Sequences of PCR primers used to evaluate relatmession of AQRP and MC4R genes in rat

Primer Primer sequence Amplicon length (bp)
MCA4R-F 5 TGGGTGTCATAAGCCTGTTGG 3° 181
MC4R-R 5" GCGTCCGTGTCCGTACTG 3°
AgRP-F 5" TGAAGAAGACAGCAGCAGACC 3° 189
AgRP-R 5" TGAAGAAGCGGCAGTAGCAC 3°
GAPDH-F 5° AAGAAGGTGGTGAAGCAGGCATC 3° 112
GAPDH-R 5° CGAAGGTGGAAGAGTGGGAGTTG 3°
600- a
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Fig. 1. Mean (z standard error) of the relative expressioiMC4R gene in the hypothalamus of rats (n=5) myrihe estrous cycl

Different letters indicate significant differende<(0.05).
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Fig. 2. Mean (+ standard error) of the relative expressiobAgRP gene in the hypothalamus of rats (n=5)rduthe estrous cycle.

In the present study, we investigated the
expression of AGRP and MC4R mRNAs during the
estrous cycle in the rat hypothalamus for the first
time. We also showed that MC4R mRNA in
proestrus was greater (3.2 fold) than the other
phases of the cycle. In rats during the estrus,
metestrus, diestrus, and early proestrus phases, th
concentration of GnRH is at its basal level. At mid
proestrus phase, the GnRH surge center is activated
(30). In the afternoon of proestrus phase, the
circulating levels of LH begin to rise rapidly and
reaches its peak in the evening, resulting in
ovulation. The blood LH level then decreases and
reaches basal levels during the rest of the cycle
(81). Therefore, increase in MC4R mRNA that we
observed in the present study might be involved in
preovulatory GnRH/ LH surge. Most of the GnRH
neurons are located in the vicinity ef-MSH
expressing fiber (32) and GT1-1 hypothalamic cells
express MC4R and the stimulation of these cells
with Nle4 D-Phe7a-MSH leads to GnRH secretion
(33, 34).

In rats, ovarian estradiol secretion reaches its
maximum level in the mid of the proestrus phase
(31). Estradiol injection led to the up-regulatioh
MC4R in the PVN of OVX rats (35). Ovariec-
tomized rats that had been treated with estrogdn an
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progesterone indicated partial prolactin and LH
surge that was inhibited during hunger (36). MC4R
antagonists decrease prolactin and LH surge in the
rats fed with normal diet and inhibit the effect of
leptin on these hormones in hungry rats. Thus,
MC4R could be a mediator of leptin effects on
prolactin and LH surge (36). MT-Il led to prolactin
surge in hungry rats. Accordingly, MC4R may be
important for prolactin  surge during the
preovulatory period (37). Leptin stimulates GnRH
(38) and LH secretion in the rat hypothalamus and
MC4R is a mediator of leptin effects during
homeostasis (39). Therefore, the high level of
MC4R mRNA during the proestrus phase could be
involved in prolactin preovulatory surge.

In the present study, there was no significant
difference in AQRP mRNA levels during the estrous
cycle but the mean of AQRP mRNA in proestrus
phase was 40% lower than estrus and metestrus
phases and 10% lower than diestrus phase. In many
mammals, GnRH secretion is regulated by ovarian
steroid feedback mechanisms. In rats, ovarian
estradiol secretion during the estrus phase is low,
while at the end of metestrus phase, estrogen
secretion begins to increase and is high during the
diestrus phase; it reaches its peak in the praestru
evening, thereafter, declining to its basal leadl)(

In OVX rats, estradiol injection led to the deceas
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of AgRP expression in the ARC (25). Therefore,
the low level of AQRP mRNA in proestrus and
diestrus phases could be due to the increase of
estradiol secretion during these phases.

In rodents, GnRH neurons do not express
alpha- estradiol receptor (lRthat is essential for
positive and negative estradiol feedback (40).
Increase in tonic LH secretion leads to the inaeas
in estradiol synthesis from follicles and the peék
estradiol leads to LH surge (41). AgRP inhibits
prolactin and LH surge in female rats while the
antiserum against AgRP reverses this effect (42).
ICV injection of AgRP, inhibits pulsatile LH
secretion in monkey (23). Thus, AgRP could inhibit
GnRH pulses and regulate estrous cycle.

In conclusion, our finding showed that in
proestrus phase during the preovulatory period,
MC4R might have excitatory effects and AgRP
might have inhibitory effects on GnRH/ LH
secretion in rats.
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