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Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial cancer occurring in the oral
cavity, where it accounts for nearly 90% of all oral cavity neoplasms. The c-MYC transcription factor plays an
important role in the control of programmed cell death, normal-to-malignant cellular transformation, and
progression of the cell cycle. However, the role of c-MYC in controlling the proliferation of OSCC cells is not
well known. In this study, c-MYC gene was silenced in OSCC cells (ORL-136T), and molecular and cellular
responses were screened. To identify the pathway through which cell death occurred, cytotoxicity, colony
formation, western blotting, caspase-3, and RT-gPCR analyzes were performed. Results indicated that
knockdown of c-MYC has resulted in a significant decrease in the cell viability and c-MYC protein synthesis.
Furthermore, caspase-3 was shown to be upregulated leading to apoptosis via the intrinsic pathway. In response
to c-MYC knockdown, eight cell proliferation-associated genes showed variable expression profiles: c-MYC (-
21.2), p21 (-2.5), CCNA1(1.8), BCL2 (-1.4), p53(-3.7), BAX(1.1), and CYCS (19.3). p27 expression was
dramatically decreased in c-MYC-silenced cells in comparison with control, and this might indicate that the
relative absence of c-MYC triggered intrinsic apoptosis in OSCC cells via p27 and CYCS.
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Cancer in its broad sense is one of the serious
diseases with thousands of deaths worldwide
recorded each year (1). Several etiology factors
underlie cancer, including bad nutrition habits (2),
lack of exercise (3), family history (4), and
prolonged exposure to environmental methylation-
modulating agents (5-7).

Head and neck squamous cell carcinoma
(HNSCC), including oral cancer, is a widespread
malignancy with more than 500,000 newly-
diagnosed cases per year worldwide (8, 9). Oral
cancer is one of the most common malignancies not
only in the developing, but also in the developed
countries, with more than 405,000 new cases
reported each year (10-12). One major type of oral
cancer is the squamous cell carcinoma, which is
considered the most prevailed histological form
accounting for more than 90% of all HNSCC cases
(13).

Etiologic factors for oral squamous cell
carcinoma (OSCC) include, but are not limited to,
alcohol (14) and tobacco (15), where alcohol and
tobacco appear to have a synergistic effect in the
etiology of OSCC. Other etiologic factors include
red meat and salted meat consumption (16), dietary
deficiencies (17), and poor oral hygiene (18). These
factors cumulatively induce multi-step carcinog-
enesis process leading to the accumulation of
several genetic (oncogenes and tumor suppressers)
and epigenetic (hyper- and/or hypomethylation)
mutations (19-21). Recent researches have focused
on finding molecular diagnostic/prognostic markers
that could help in assigning patients in the right
category.

Avian myelocytomatosis virus oncogene
cellular homolog (c-MYC) is a member of the
MYC family of transcription factors, where it plays
an essential role in controlling cell cycle
progression (22), programmed cell death (23) and
normal-to-malignant cellular transformation (24).
Over expression of the c-MYC gene is observed in
different types of cancer including HNSCC (25). c-
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MYC was also involved in the regulation of
telomerase transcription (a major player in the
carcinogenesis process) in association with different
E26 transformation-specific (Ets) transcription
factor family members (26). p53 (27) and p16 (28)
are among the critical tumor suppressor genes that
are highly studied in OSCC, with p53 being
mutated in about 90% of HNSCC cases (29, 30).

In the present study, it was aimed to determine
the role of c-MYC in controlling the proliferation of
OSCC cells. For this purpose, we silenced the c-
MYC gene in OSCC cells by means of small
interfering RNAs (siRNA). The effects of c-MYC
inactivation was assessed by cytotoxicity, colony
formation and caspase-3 assays. Besides, the
expression level of eight cell proliferation-
associated genes were quantified by reverse
transcription  quantitative PCR  (RT-qPCR)
technique. Western blotting was utilized to confirm
the absence of c-MY C protein. The effect of c-MYC
in controlling the proliferation and death of OSCC
was demonstrated for the first time. The results
suggest a possible way to control the death of
OSCC cells.

Materials and methods

Culture of oral squamous cell carcinoma
(OSCC) cell lines

The human oral squamous cell carcinoma cell
line (ORL-136(T)) was grown in DMEM media
(Gibco-Life Technologies, USA) supplemented
with 10% fetal bovine serum (FBS) (Gibco-Life
Technologies, USA), hydrocortisone (Sigma-
Aldrich, Germany), and antibiotics mix (1%
penicillin/streptomycin and 0.1% amphotericin B)
(Gibco-Life Technologies, USA). Cells were
maintained in an atmosphere containing 95% air
and 5% CO; at 37°C.
siRNA transfection

SiRNA targeting c-MYC was purchased from
Santa Cruz Biotechnology (USA). The transfection
was performed according to the manufacturer's
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protocol. Briefly, cells were transfected with c-
MYC-targeting SiRNA at final concentration of 50
nM. About 5 x 10° cells were plated in 6-well
culture plates for 24 h. All medium were removed,
and the plates were washed with transfection
medium (Santa Cruz Biotechnology, sc-36868).
Solution A was prepared by adding 3 pL duplex
siRNA in 50 pL transfection medium while
solution B was prepared by adding 3 pL
transfection reagent in 50 uL transfection medium.
Solution A was added drop wise to solution B and
then mixed well. The mixture was incubated for 30
min at 37°C and then 400 pL of transfection
medium was added. The mixture was then
overplayed on the cells, with the old medium
removed. Plates were incubated for 3 h in CO;
incubator. As a negative control, several wells
containing OSCC cells were treated with
transfection medium and transfection reagent
(TM+TR). These cells were subjected to all
downstream analyzes parallel to the c-MYC-
targeting siRNA-treated cells.
Cell proliferation assay

Cytotoxicity of siRNA-treated cells was
measured using MTT (3-(4,5-dimethylthiazolyl-2)-
2,5-diphenyltetrazolium bromide) (Merck, Germ-
any) assay according to Angius and Floris (31).
Briefly, the harvested cells were re-suspended in
100 pL medium, and were then added to a 96-well
microtiter plate (3 x 10° cells/well). Twenty pl of
MTT solution (5 mg/mL) was added to each well
including control wells. The cells were then
incubated for 3 h in CO; incubator. The formed
formazan crystals were dissolved by adding 180 ul
DMSO (Merck, Germany) to each well. The plate
was incubated at room temperature on a shaker at
250 rpm for 30 min, and was read at 545 nm using
plate reader (TS Absorbance Reader, BioTek
Instruments, USA). All samples were read three
independent times, and the average was considered
for data analysis. Cells were read after 3, 6, 9, and
12 h. The cell viability was calculated according to
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the following equation (32): % Cell viability = (OD
siRNA-treated / OD control) x 100
Clonogenic assay

After transfecting the OSCC cells with c-
MYC-targeting siRNA for 12 h, the cells were
trypsinized and collected by centrifugation at low
speed (250 rpm) for 15 min at 4°C, and then washed
twice with PBS. Collected cells were re-suspended
in sufficient amount of growth medium, and
counted under light microscope. Then, the cells
were diluted to a final concentration of 10%cells/mL,
cultured in 12-well plates and incubated in CO;
incubator at 37°C for at least 7 days or until the
colonies started to appear. To stain the cells, the old
medium was removed, and the cells were washed
twice with PBS (33). Appropriate amount of 6%
glutaraldehyde and 0.5% crystal violet were added
to each well and left for 45 min at room
temperature. The mixture was removed carefully,
and the plates were left to dry at room temperature.
Formed colonies were counted under light
microscope. All experiments were performed in
triplicate.
Caspase-3 assay

To find the activity of caspase-3 enzyme, a
colorimetric Caspase 3 Assay Kit (Sigma-Aldrich,
USA) was used according to the recommendations
of the manufacturer. The assay was performed in 1
ml reaction mixture, and the absorbance was read
by using a plate-reader (Biotek, Neo2) at 405 nm.
RNA extraction and cDNA synthesis

Total RNA was extracted from (1) control
cells (non-treated), (2) transfection medium +
transfection reagent (TM+TR)-treated cells (as
negative control), and (3) c-MYC-targeting siRNA-
treated ORL-136 (T) cells after 12 h of transfection
using RNA Isolation System (Qiagen, GmbH,
Germany). RNA quality and quantity were checked
by using NanoDrop™ 2000 (Thermo, UK)
spectrometer. cDNA was synthesized using
QIAGEN®OneStep RT-PCR kit according to
the suggested protocol of the manufacturer (Qiagen,
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GmbH, Germany).
Gene expression analysis

RT-qPCR was used to amplify some marker
genes associated with intrinsic apoptotic pathways,
oncogenic pathway, and cell cycle control
mechanisms (c-MYC, CCNA1, p21, BCL-2, p53,
BAX, p27, and cytochrome C, somatic (CYCS)).
Primers sequences are presented in Table 1. About
100 ng of cDNA was mixed with SYBR™ Green
PCR Master Mix (Applied Biosystems™, USA),
forward (10 pM), and reverse (10 pM) primers. The
total volume was brought to 25 pL with molecular
biology-grade water. The thermal cycling profile
was adjusted as follows: pre-PCR heating for 2 min
at 95°C, then 40 cycles of 94°C for 45 s, and 56-
63°C (depending on each gene) for 30 s. All
reactions were performed in triplicates on
StepOnePlus™ Real-Time PCR System (Applied
Biosystems, USA). Melting curve analysis was
performed in order to determine gene specificity.
Actin gene was used as an internal control. 2-4CT
method was employed to calculate the fold changes
in gene expression.
Western blotting

Proteins were extracted from the OSCC
collected from the cell culture. Cells were collected
and washed three time with PBS, and incubated
with lysis buffer (50 mM Tris/HCI pH 6.8, 2 mM
EDTA pH 8.0, 1% SDS, 1% 2-mercaptoethanol,

Table 1. Primers sequences.
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8% glycerol, and 2% 5 protease inhibitor cocktail)
on ice for 30 min. The lysate was spun down for 15
min at 13,000 rpm. Protein concentration was
determined by Qubit fluorometer (Invitrogen,
USA). 60 pg sample was loaded onto a 15% SDS-
PAGE gel, and then the PAGE system was operated
at constant voltage (120 V) for 45 min. Then, the
proteins were transferred to a nitrocellulose
membrane. The membrane was blocked with TBS-
T washing buffer (5% skimmed milk dissolved in
Tris-buffered saline, and 0.1% Tween -20) and
coated with specific primary antibodies in a dilution
of 1:1500. Antibodies against c-MYC and f-actin
were purchased from Santa Cruz Biotechnology
(USA). Nitrocellulose membrane was washed and
then coated with HRP-conjugated goat anti-rabbit
secondary antibody (Amersham Pharmacia, USA).
The membrane was washed twice and an enhancing
chemiluminescence reagent (Amersham ECL
Western Blotting Detection Kit, Amersham
Pharmacia, USA) was added (33). The specific
protein bands were visualized and photographed.
Statistical analysis

At least three replicates of randomized sets
were performed for all experiments. Student t-test
was used to identify the significance. Standard
deviations and errors were calculated using
Microsoft Excel-based equations. The significant
differences were denoted as* P<0.05 and** P<0.01.

Gene Forward 5°- 3" Reverse 5°- 3° Tm (°C)  Size (bp)
c-MYC  CGTCCTCGGATTCTCTGCTC CTTCGCTTACCAGAGTCGCT 59.8 115
CCNA1 TACCTCAAAGCACCACAGCA  TCAAGGAGGCTATGGCAGATTC 59.6 159
p21 GACATGTGCACGGAAGGACT GGGCAGGGTGACAAGAATGT 60.1 677
BCL-2 CTGTGGAGCCGGCGAAATAA  CAGGCGTTATCGGTCAGGTT 60.5 100
TP53 CGCTTCGAGATGTTCCGAGA CTGGGACCCAATGAGATGGG 59.8 216
BAX ATGCCCGTTCATCTCAGTCC GGCGTCCCAAAGTAGGAGAG 58.8 158
p27 AAGTGGCTGCATCATTGGGG CTGGTTTTCGGGATGTTTCTCA 60 556
CYCS TGGGCCAAATCTCCATGGTC ACACTCCTGATAGTTTGCCACA 60 154
Actin CACCAACTGGGACGACAT ACAGCCTGGATAGCAACG 60 189

Primer design was performed and validated using Primer BLAST.
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In the present investigation, OSCC cells were
treated with c-MYC-targeting SiRNA to determine
the actual mechanism by which c-MYC induces
carcinogenesis. MTT assay was performed on the
treated and untreated cells, and the results showed
that in the first 3 h of incubation period, no
significant differences (P =0.062) were obtained
between control and the treatments (Figure 1).
Meanwhile, for the 6, 9, and 12 h of incubation
periods, the cell viability was significantly changed
between siRNA-treated cells and control (P=0.024),
and between negative control and siRNA-treated
cells (P <0.05). The number of viable cells in
siRNA-treated group was significantly decreased in
the 12 h incubation period, and the change was
increased upon 12 h transfection period.
Clonogenic assay was performed to measure the
OSCC cell survivability in vitro after being treated
with c-MYC-targeting siRNA (Figure 2). Results
indicated a significant decrease (P = 0.04) in the
number of colonies formed in the c-MYC-targeting
siRNA-treated cells in comparison with the control,
while no significant difference was detected
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between control and negative control cells. Caspase
3 assay was performed to identify the cell death
pathway initiated by down-regulating c-MYC in
OSCC cells. Results indicated a significant increase
(P = 0.018) in the expression profile of caspase 3 in
c-MYC-targeting-siRNA-treated cells in comparison
with the control and negative control (Figure 3).
The induction appeared after 3 h treatment, and
gradually increased with increased incubation
periods (i.e., 6, 9, and 12 h). This finding revealed
that the silencing of c-MYC lead to the apoptosis of
OSCC cells.

RT-gPCR was employed to assess the
expression level of several cell proliferation-
associated genes; c-MYC, CCNA1, p21, BCL-2,
p53, BAX, p27, and CYCS. Results showed a
variable fold change in almost all examined genes
in comparison with the control (Figure 4). Treating
cells with c-MYC-targeting-siRNA down-regulated
the gene expression of c-MYC (21 times), p21 (2.5
times), p53 (3.7 times), and p27 (51 times); while
CYCS was up-regulated (19.3 times). The relative
fold changes were not significant for BAX and
CCNAL genes.

a - % ns**l
d Pl
N

Bl control 55 Negative Control [ siRNA-treated cells

Fig. 1. Cytotoxicity assay via MTT. Cells™ viability of non-treated (control), siRNA-treated, andtransfection media + transfection reagent
(TM+TR)-treated cells (as negative control) were obtained after 3, 6, 9, and 12 h of incubation periods. The significant differences were

denoted as * P < 0.05. ns: not significant.
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Fig. 2. Colonogenic assay. (a) Colonies of OSCC cells after being treated with c-MYC-targeting SiRNA. C: control; NC: negative control
(TMR+TR); STC: siRNA-treated cells. (b) Significant decrease (**) in the colony count was obtained between control and c-MYC-targeting
siRNA-treated cells. The significant differences were denoted with * P < 0.05 and ** P < 0.01. ns: not significant. The scale bar is 4 cm.
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Fig. 3. Caspase 3 assay. Primarily, there was a significant increase in the caspase activity in siRNA-treated OSCC cells in comparison with
the control. This increase continued until the last incubation period (12 h) where highly significant activity in comparison with the control

cells was observed. Significant differences are marked with * P < 0.05 and ** P < 0.1. ns: not significant.
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Fig. 4. Relative expression of c-MYC, CCNA1, p21, BCL-2, p53, BAX, p27, and CYCS genes. (a) Downregulated and (b) upregulated
genes are represented in OSCC cells treated with c-MYC-targeting siRNA in comparison with the control cells. Significant variation in the

fold changes was noticed especially in p27 (-50.9), c-MYC (-21.2), and CYCS (19.3).
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Fig. 5. Western blot analysis of expressed c-MYC and g-actin proteins. c-MYC appears to be downregulated in the c-MYC-targeting

siRNA-treated OSCC cells in comparison with the control cells..

In order to confirm the suppression of c-MYC
genes, we performed western blot analysis by using
c-MY C-specific antibody. Western blotting image
is shown in Figure 5. Accordingly, it was shown
that c-MYC protein was down-regulated in the
siRNA-treated cells in comparison with the TM-
treated and control cells.
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Discussion

c-MYC is constitutively expressed in cancer
tissues, which leads in turn, to upregulation of
several cancer related genes including, but not
limited to, oncogenes (25, 34). In this study,
knocking down c-MYC in the OSCC cells resulted
in significant decrease in the overall cell viability in
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the siRNA-treated cells as indicated by MTT assay
(Figure 1). Clonogenic assay also indicated the
suppression of cellular proliferation in cells treated
with c-MYC-targeting siRNA (35) (Figure 2).
Although transient, siRNA-mediated gene knock
down is still the best choice to identify the role of
such gene in the tumorigenesis and/or tumor
spreading (36, 37).

Furthermore, the results indicated a significant
increase (P = 0.018) in the expression of caspase 3
in the c-MYC-targeting-siRNA-treated OSCC cells
(Figure 3). Because c-MYC functions as a regulator
of cellular proliferation, its partial absence might
lead to different cell death pathways activation,
including those involving caspase 3 (38). This
reflects the apoptosis activity. A similar finding was
observed in acute lymphoblastic leukemia cells.
When ¢-MYC was suppressed by a c-MYC inhibitor,
the cells underwent caspase-3-dependent apoptosis
(39). An inverse relationship between the
expression of c¢c-MYC and caspase-3 was also
observed in this study. However, another study (40)
indicated no association between caspase-3 and c-
MYC expressions, although in non-small cell lung
carcinoma cells. Western blotting analysis revealed
the partial knock down of c-MYC as indicated by
the presence of slightly visible protein band (Figure
5). siRNA-mediated downregulation of c-MYC, not
only induced apoptosis in vitro, but also could be
used to suppress the growth of OSCC in vivo (41).

In the present study, eight genes were
subjected to RT-gPCR analysis (c-MYC, CCNAL,
p21, BCL-2, p53, BAX, p27, and CYCS). Data
showed that for the cells treated with c-MYC-
targeting siRNA, a variation occurred in the gene
expression profiles, where CYCS was upregulated
(19.3), while c-MYC and p27 were downregulated
(-21.2 and -50.9, respectively). Partial knocking
down of ¢c-MYC resulted in upregulation of CYCS,
and this is in contradiction with the finding of Juin
et al. (42) who indicated that activation of c-MYC
triggers the release of CYCS from mitochondria.
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laccarino et al. (43) also indicated that releasing
Cyecs is associated with the activation of c-Myc in
rats. c-MYC, one of the most frequently inordinate
oncogenes, is highly expressed in several
malignancies including oral cancers. Thus, its
inactivation might lead to cell death (44, 45). In this
study, knocking down of c-MYC have led to p27
downregulation. Our data are in line with another
study (46), which indicated that although activation
of ¢c-MYC did not result in changes in the
expression of p53, p21waf/erl BCL-2, BAX, BCL-
xL, BAD and cyclins D1, E, A and B, its partial
knock down has led to downregulation of p27,the
potent tumor suppressor gene. Induction of
apoptosis by down-regulation of p27 has been
shown in different cell types such as glioblastoma
cells (47), mesangial cells and fibroblasts (48).
Also, it is found that spontaneous apoptosis in p27-
positive tumors is higher than that in p27-negative
OSCC (49). In this study, the suppression led to
apoptosis as revealed by cytotoxicity assay and
western blotting. It is indicated that knocking down
of c-MYC disrupts the cell cycle control, which, in
turn, activates the release of CYCS C and p53
leading to cell death (50), via disrupting the
Cdk/Rb/E2F pathway, and down regulating CDK4,
cyclin D1, CDK2, pRb, E2F3, and DP2 (49, 51,
52). The gene expression level of p27 is correlated
with c-MYC, where downregulating c-MYC leads to
downregulation of p27 and its stability at protein
level (49).

The present study tried to identify the pathway
through which OSCC cells committed apoptosis
after partial knock down of c-MYC. OSCC cells
were treated with c-MYC-targeting SiRNA.
Cytotoxicity was measured using MTT assay
followed by clonogenic assay and western blotting.
The expression of some cancer-related genes (c-
MYC, CCNA1, p21, BCL-2, p53, BAX, p27, and
CYCS) was evaluated using RT-qPCR. Results
indicated that partial knockdown of c-MYC resulted
in significant reduction in the cell viability and c-
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MY C protein production. The partial knockdown of
c-MYC instead of full silencing may have occurred
due to off-target effect. Either the sense or antisense
siRNA strands may have partial complementarity
with non-target mMRNAs (53). Caspase 3 assay
revealed an intrinsic cell death pathway, where the
level of caspase 3 was increased significantly in the
partial absence of c-MYC. Most of the studied
genes were down-regulated in siRNA-treated
OSCC cells including, c-MYC, p21, p53, and p27.
On the other hand, CYCS was up-regulated with the
knock down of c-MYC. These data suggest a
possible route for the control of OSCC cells’ death.
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