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Various mesenchymal stem cells as easily accessible and multipotent cells can share different essential signaling
pathways related to their stemness ability. Understanding the mechanism of stemness ability can be useful for
controlling the stem cells for regenerative medicine targets. In this context, OMICs studies can analyze the
mechanism of different stem cell properties or stemness ability via a broad range of current high-throughput
techniques. This field is fundamentally directed toward the analysis of whole genome (genomics), mRNASs
(transcriptomics), proteins (proteomics) and metabolites (metabolomics) in biological samples. According to
several studies, metabolomics is more effective than other OMICs <for various system biology concerns.
Metabolomics can elucidate the biological mechanisms of various mesenchymal stem cell function by measuring
their metabolites such as their secretome components. Analyzing the metabolic alteration of mesenchymal stem
cells can be useful to promote their regenerative medicine application.
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Metabolomics Analysis of Stem Cells

Two main properties of stem cells are including
prolonged self- renewal and multi-potent
differentiation capacity which make them ideal
candidate for cell therapy and regenerative
medicine (1-5). Related to these properties, stem
cells share several essential genes and signaling
Hedgehog, = Wnt,  Notch,
phosphatidylinositol 3-kinase/ phosphatase, and

pathways  (i.e.

nuclear factor-xB signaling pathways) as stemness
ability (6-8). In other word, stem cells can preserve
their lineage, interaction with the environment, and
cross-talk with adjacent cells to keep a balance
between repose, proliferation, and restoration,
through stemness ability (9-11). However,
understanding the mechanism of stemness ability is
challenging (9). According to several studies,
stable, safe, and more accessible stem cells are
considered as an excellent choice for regenerative
medicine. In this context, mesenchymal stem cells
(MSCs) (as easily accessible, self-renewable, and

Genomics

multipotent cells with few consideration ethics)
have significant efficacy in regenerative medicine.
(12-26). Furthermore, recent development in
OMICs approaches (technologies for understanding
the whole activity of cells, tissues, and organs at the
molecular  level) specifically  metabolomics
approaches (extensive analysis of metabolites in
cells, tissues, and organs) can increase our
understanding about the self-renewal and
differentiation mechanisms. On the other hand,
analysis of chemical alterations related to natural
processes of living cells including growth,
environmental adaptation, and differentiation can
be provided by metabolomics methods (27-29).
OMIC:s - based stem cell monitoring

Multi- OMICs approaches including geno-
mics, epigenomics, transcriptomics, proteomics,
and metabolomics are functional methods to study
stem cell biology and its therapeutic application
(Fig.1) (30-32).
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Fig. 1. Based stem cell monitoring. Multi- OMICs approaches are functional methods to study stem cell biology and its
therapeutic application through evaluation of molecular mechanisms of stem cells properties and quantification of cellular

products (33).
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At first, human genome project has led to the
advancement of genome sequencing and study on
DNA by analysis of single nucleotide
polymorphisms (SNPs), variation copies, and
mutations (34-36). Nowadays, genomics as the
most mature approache of OMICs and next
generation sequencing (NGS) as the latest
technology in this field are used for high-
throughput detection and cost effective analysis of
biological data (37-40). On the other hand,
epigenetic modifications (e.g. methylation and
histone acetylation) have an important role in
differentiation and development of stem cells (41,
42). The study of heritable modifications (not
sequence changes) of DNA is called epigenomics
(43, 44). Additionally, qualitative and quantitative
transcriptomics can facilitate the investigation of
RNAs in stem cells, via molecular and cellular
methods such as micro-array and RNA-sequencing
(45, 46). It also has a vital role in analyzing key
genes and pathways that participate in self-renewal,
proliferation, and differentiation of stem cells (47-
49). Some transcription factors (related to non-
coding RNAs) such as octamer-binding
transcription factor 4 (OCT 4) and NANOG can
regulate pluripotency feature of stem cells (50, 51).
Proteomics tries to evaluate the qualitative and
quantitative changes in proteins and identify new
markers in stem cell development stages (52, 53).
Finally, metabolomics measures and demonstrates
the products of metabolism such as amino-acids
and fatty-acids. In this respect, metabolomics is an
accurate approach to recognize metabolite
biomarkers in biological samples (54, 55).
Although, application of OMICs, especially
metabolomics, for monitoring of stem cell in
researches and therapies is in its infancy period, it
can be useful to understand different features of
cell-based therapy (1, 56).

Stem cells metabolomics

Because of the self-renewal and differentiation

properties of stem cells, they can be applied for

Goodarzi P et al.

regenerative medicine, drug screening, toxicity
testing, and evaluation of disease phenotypes (57-
59). Although they are metabolically inactive
population in quiescent state, their metabolic
activity increases during differentiation (60). Stem
cells niche can preserve them in a quiescent state to
maintain their self-renewal ability (61, 62). In other
words, morphogens and growth factors in the niche
of stem cells can change the regulation of stem cells
through numerous metabolic pathways (1, 63, 64).
Moreover, molecular mechanisms can regulate
differentiation and reprogramming, and also they
can control the energy of metabolism in stem cells
throughout glycolytic or oxidative phosphorylation
(OXPHOS) reactions (1, 65, 66). In other words,
changes in glycolysis and OXPHOS have impact on
differentiation or reprogramming of stem cells (66-
68). Glycolysis and OXPHOS changes can alter the
metabolite levels and reduction—oxidation (redox)
state (69-71). Subsequently, hypoxia, glycolysis
and redox states can affect the homeostasis and
regeneration of stem cells (67, 72, 73). For instance,
hypoxia has a key role in maintaining
undifferentiated state of stem cells by reducing
redox state (74-76). For preparing a balance
between self-renewal and differentiation ability, the
role of redox state can be important (77, 78).
Moreover, the increase of reactive oxygen species
(ROS) can promote cell differentiation (74, 79).
Herein, understanding the mechanism of stem cells
(e.g. MSCs) function is momentous for in vitro and
in vivo studies and also the stem cells application in
cell therapy.
Metabolomics- based comparison of mesenchy-
mal stem cells

MSCs as multi-potent stem cells can be
extracted from different sources. Their intrinsic
properties have drawn the attention for developing
more comprehensive studies (13, 14). Moreover,
realizing the biological mechanisms of their
function can be helpful for developing stem cell
researches. Accordingly, metabolomics as a
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valuable tool for stem cell monitoring can clarify
the biological mechanisms of MSCs function
through assaying metabolites. Metabolites of MSCs
are involved in metabolic or signaling pathways
(80-82). Metabolic pathways produce vital signals
for the self-renewal, differentiation and other
properties of MSCs. On the other hand,
undifferentiated state and differentiated state of
MSCs can be distinguished via their metabolic
profile. Accordingly, in undifferentiated state,
mitochondrial OXPHOS is maintained at a low
level, while the glycolytic function is maintained at
a high level (81, 83). Additionally, in the early
phase of MSCs differentiation, down-regulation of
some pluripotent genes, up-regulation of terminal
genes, and changing the subsets of metabolic
enzymes can redirect the new fate of cells.
Furthermore, in normoxic states, the proliferation
and colony-forming abilities of MSCs are
considerably increased (84, 85). In other words,
hypoxic condition restricts MSC proliferation to
maintain  long-term  self-renewal  capacity.
Generally, metabolomics can analyze the rapid
kinetics and dynamics of metabolic reactions in
different MSCs (86-88). Different types of MSCs
share various properties due to their gene
expression profile. Additionally, MSCs from
various sources have also various secretome and
metabolic profile (89, 90).
Metabolomics analysis of mesenchymal stem
cells secretome

MSCs have demonstrated a pivotal and
therapeutic impact on several diseases by producing
a broad spectrum of autocrine and paracrine
secretion factors (secretome) (15, 81, 91). The
characterization of the MSCs secretome can
elucidate their activation mechanism (92).
Accordingly, metabolomics analyses can decipher
the mechanism of secretome component functions
(93). MSCs conditioned media (MSCs-CM) and
extracellular vesicles (EVs) are two main MSC-
sourced secretome.
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Metabolomics study of mesenchymal stem cells
conditioned media

MSCs-CM  encompasses multiple growth
factors (GFs), metabolites, and cytokines. It can be
prepared through 4 steps including isolation and
characterization of cells, culture of cells in a proper
culture medium, cell expansion, and CM collection
(94, 95). Additionally, it has been shown that
MSCs-CM can improve various pathophysiology
hallmarks of diseases e.g. lung injury, skin wound,
Alzheimer’s disease, and Parkinson’s disease. For
instance, there are some anti-inflammatory
cytokines in MSC-CM (i.e. ciliary neurotrophic
factor (CNTF), transforming growth factor 1
(TGF1), neurotrophin 3 (NT-3) factor, interleukin
(IL) 13, IL18 binding protein (IL18BP), IL10,
IL17E, 1L27 or IL1 receptor antagonist (ILLRA)),
and also some pro-inflammatory cytokines
(including IL1b, IL6, IL8, and IL9) (95, 96). The
equilibrium between these two types of cytokines
can mediate the anti-inflammatory impact of MSC-
CM. On the other hand, MSC-CM has anti-
apoptotic activity via reducing the pro-apoptotic
factors and increasing the expression of pro-
angiogenic factors. Metabolomics can support
quantification of MSC-CM metabolites by different
targeted and non-targeted methods (91).
Metabolomics profiling of mesenchymal stem
cells derived extracellular vesicles

EVs including exosomes and micro -vesicles
can be secreted by cells which have an important
role in intercellular signaling pathways (15, 97). It
has been confirmed that MSC-EVs specifically
MSCs-derived exosomes (MSC-Exo) can imitate
their origin  MSCs therapeutic effects in
improvement of different disorders. MSC-EVs
carry lipids, genetic materials (MRNA and non-
coding RNA), and proteins. Moreover, they can be
characterized by some surface markers such as
CD29, CD73, CD44, and CD105. On the other
hand, it is remarkable that MSCs- EVs from
different MSC sources have also different
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composition (98). Namely, menstrual fluid derived
MSCs -Exo has greater neurite outgrowth response
than bone marrow (BM), chorion, and umbilical
cord-derived MSCs. Metabolomics techniques can
be used to analyze the mechanism of different
MSC-EVs
metabolic profile (99).

activity based on their different

Analytical techniques in metabolomics analysis
Metabolomics can assay the metabolite

compositions of cells and biological fluids through

various targeted and non- targeted techniques (100,
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containing capillary electrophoresis (CE) (the

separation method in which metabolites are
separated based on their migration in the electrical
field of the capillary tube), gas chromatography
(GC) (a method for separating volatile matters),
ultra-performance liquid chromatography (UPLC)
(as a modern liquid chromatography method can be
used for particles less than 2 pl in diameter), and
high  performance or high-pressure liquid
chromatography (HPLC) (the highly advanced form
of column chromatography which pumps the

101).

A broad range of analytical methods

sample of metabolites in mobile phase at high

Table 1. Advantages and disadvantages of metabolomics techniques.

Method

Advantages

Disadvantages

References

NMR

GC-MS

LC-MS

CE-MS

HPLC-
MS

UPLC-MS

- Simple sample preparation
-Excellent reproducibility

-Quantify a wide-range of
compounds in the micro-molar range

organic

- High separation efficiency
- The oldest and a robust tool for qualitative
metabolic profiling

- High separation efficiency

- No derivatization is needed for the analysis
of polar or high molecular weight
metabolites

- Quick analysis of small samples

-Suitable for the separation of polar and
charged compounds

- Powerful for charged metabolites
-High-analyte  resolution —  providing
information mainly on polar or ionic
compounds

-Short analysis time

-Very small sample requirement

-Robustness

-Ease of use

- Good selectivity

-Adjustable sensitivity

-Powerful biomolecular
research

- Covers a number of polar metabolites and
enlarges the number of detected analytes

-Better efficiency with speedy analysis

technique in

-Low sensitivity compared with MS methods
- Suitable for quantification of metabolites
present in relatively high concentration

-Non-volatile matrices require additional
preparation

- Some gases are challenging (CO2, N2, 02,
Ar, CO, H20)

- lon suppression

- Poor concentration sensitivity

-Lack of efficiency due to low diffusion
coefficients in liquid phase

Less time life of columns

(102, 103)

(104, 105)

(103, 106)

(107, 108)

(109, 110)

(107, 111)

CE: capillary electrophoresis; GC: gas chromatography; HPLC: high performance liquid chromatography; LC: liquid chromatography; MS: mass
spectrometry; NMR: nuclear magnetic resonance; UPLC: ultra-performance liquid chromatography.
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pressure within a column or the stationary phase)
linked to high-throughput techniques including
nuclear  magnetic  resonance (NMR) (a
spectroscopic procedure to follow local strong
stationary  magnetic  fields around atomic
nuclei which is for absorbing very high-frequency
radio waves) and mass spectrometry (MS) (an
analytical manner to ionizing chemical samples to
identity unknown composites and chemical features
of different molecules based on their mass-to-
charge ratio) can be used for separation,
examination, and quantification of the cellular
metabolites ~ composition as  metabolomics
approaches (107, 112-114). Each of the metabolo-
mics approaches has some advantages and
disadvantages (Table 1).
Conclusion and future perspectives
Metabolomics is an impressive research area,
which can be used for screening the metabolic
modifications during the stem cells reprogramming,
proliferation, and differentiation (56, 115). Indeed,
screening the metabolic modifications of stem cells
(e.g. MSCs) can facilitate their application for
regenerative medicine purposes via increasing
the man control over in vitro manipulation of
stem cells including tissue-specific stem cells
activation, and promote stem cells for migration to
the side of tissue injury. Based on researches, some
important metabolic elements can be used to
dedifferentiate stem cells toward organ-specific
somatic cells (116). Accordingly, in the coming
future it seems that the application of generated
knowledge on metabolic key methods can be
useful for therapeutic targets without the necessity
of genetic manipulation. On the other hand,
combination of metabolomics technology with
other technologies (i.e. genomics, proteomics,
structural biology and imaging) can increase its
performance to identify novel biological pathways
in mechanism of stem cell function, and also to
identify disease mechanism (39, 117). Additionally,
progress in the development of metabolite

35 IntJ Mol Cell Med Winter 2019; Vol 8 Suppl 1

databases and in silico fragmentation tools can pave
the way for large-scale metabolomics analysis (118,
119).
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