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The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine-protein kinase that 

senses and combines various environmental signals to regulate the growth and homeostasis of human cells. This 

signaling pathway synchronizes many critical cellular processes and is involved in an increasing number of 

pathological conditions such as diabetes, cancer, obesity, and metabolic syndrome. Here, we review different 

complications of diabetes that are associated with mTOR complex 1 imbalance. We further discuss 

pharmacological approaches to treat diabetes complications linked to mTOR deregulation. 
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iabetes mellitus is a multifactorial disease 

characterized by high blood glucose 

concentration, and has become a significant health 

problem in developing countries (1, 2). It has been 

associated with many human diseases such as 

cancers, cardiovascular, renal, and blood vessel 

failure (1,3,4). Marked high blood glucose 

(hyperglycemia) causes main symptoms of diabetes 

including polyuria, polydipsia, and polyphagia (1). 

American diabetes association classifies diabetes 

mellitus in two different forms known as type 1 or 

insulin-dependent diabetes mellitus and type 2 or 

non-insulin-dependent diabetes mellitus (1). 

Previous studies showed that the mammalian target 

of rapamycin (mTOR) signaling pathway has an 

essential role in the pathogenesis of metabolic 

syndrome, obesity, and diabetes (5). The mTOR is 

an evolutionarily well-conserved serine/threonine-

protein kinase that serves as a critical regulator of 

cell metabolism, proliferation, growth, and survival 

(6-9). Increased mTOR activity is common in most 

human diseases such as cancers, diabetes, and 

genetic disorders (5,10, 11). 

The mTOR kinase can form two distinct 

multi-protein complexes named mTOR complex 1 

(mTORC1) and mTOR complex 2 (mTORC2) (12). 

mTORC1 consists of 6 components, including 

the catalytic mTOR subunit, regulatory-associated 
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Fig.1. General composition of the mTOR complex 1 and its importance in cellular growth and metabolism. mTOR: mammalian 

target of rapamycin; RAPTOR: regulatory-associated protein of mTOR; mLST8: mammalian lethal with sec-13 protein-8; DEPTOR: DEP 

domain-containing mTOR-interacting protein; PRAS40: proline-rich Akt substrate 40 kDa; 4E-BP1: eukaryotic translation initiation factor 

4E-binding protein; S6K1: protein S6 kinase 1. 

protein of mTOR (RAPTOR), the mammalian 

lethal with sec-13 protein-8 (mLST8 or GBL), the 

DEP domain-containing mTOR-interacting protein 

(DEPTOR), the Tti1/Tel2 complex, and the proline-

rich Akt substrate 40 kDa (PRAS40) (5, 10). 

mTORC1 promotes the phosphorylation of two 

downstream proteins, ribosomal S6 kinase 1(S6K1) 

and eukaryotic translation initiation factor 4E 

(eIF4E)-binding protein (4E-BP1) which leads to 

crucial cellular processes such as transcription, 

translation, protein, and lipid synthesis, cell growth 

and metabolism (Figure 1) (7). mTORC1 responses 

to amino acids, stress, glucose, growth factors such 

as insulin and insulin-like growth factor 1  

(IGF-1) (13). 

mTORC2 has seven subunits, four similar with 

mTORC1: mTOR, DEPTOR, Tti1/Tel2, and 

mLST8 and three specifics for mTORC2: 

rapamycin-insensitive companion of mTOR 

(RICTOR), mammalian stress-activated MAP 

kinase-interacting protein1 (mSIN1), and protein 

observed with rictor 1 and 2 (PROTOR1/2) (14). 

The main downstream targets of mTORC2 are all 

AGC subfamily kinases, including Akt (PKB), 

serum- and glucocorticoid-induced protein kinase 1 

(SGK1), and a protein kinase that regulates cell 

survival, migration, metabolism, and cytoskeletal 

organization (15). 

mTORC1 controls glucose homeostasis in 

many tissues such as the liver, fat (adipose), β-cells, 

and skeletal muscle through serine phosphorylation 

of insulin receptor substrate 1 (IRS-1) via 

mTORC1/S6K1 activity (16). Also, mTORC1 

plays a vital role in the regulation of the  

β-cell size/mass and function, which are essential 

in the pathogenesis  of  diabetes  mellitus (7,16, 17). 
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Because of mTORC1 ability to integrate 

insulin and nutrients responses and its impact on 

glucose homeostasis, it seems necessary to 

understand more about its biological effects during 

diabetes mellitus. This review summarizes major 

findings and the latest information regarding the 

role of the mTORC1 signaling pathway in the 

pathogenesis of diabetes complications and 

suggests the potential pharmacological approaches 

to treat diabetes complications linked to mTOR 

deregulation. 

mTORC1 in insulin secretion and glucose home-

ostasis 

β-cells located in the pancreas secrete insulin 

in response to many nutrients, and have an essential 

impact on the regulation of glucose homeostasis (5, 

18). Temporary activation of mTORC1 results in 

expansion of β-cell size, mass and insulin 

production, while constitutive activation of 

mTORC1 showed contradictory results (19, 20). 

mTORC1 signaling is a positive regulator of β-cells 

mass and functions in response to nutrients (21). 

For instance, in mice, constitutive activation of 

mTORC1 in the β-cells of the pancreas declines 

blood glucose, increases insulin secretion, and 

positively impacts glucose tolerance (5). 

Conversely, in the experiments in which glucose or 

IGF-1 is used to stimulate mTORC1 in β-cells, the 

IRS2/Akt pathway inhibition leads to β-cell 

apoptosis and glucose intolerance (22). Also, 

inhibition of mTORC1 by rapamycin exacerbates 

hyperglycemia in type 2 diabetes, showing the 

importance of mTORC1 in the function of pancreas 

(23, 24). Similarly, in the liver mTORC1 signaling 

pathway influences systemic glucose and insulin 

homeostasis (25). Permanent activation of the 

mTORC1 signaling pathway shows intense 

inhibitory effects on IRS-1, which decline the Akt 

signaling pathway. This phenomenon causes an 

imbalance between the liver glycolysis pathway and 

glucose uptake from the blood, and results in 

glucose intolerance (25, 26). 

Role of mTORC1 in obesity 

Obesity is a hazardous risk factor for the 

development of diabetes. Obesity may be observed 

with chronic systemic inflammation through excess 

fat tissue accumulation with necessary calorie 

exceeding energy saving (27). Hyperinsulinemia 

and insulin resistance are more common among 

obese patients and are related to a poor prognosis in 

diabetes (28). A growing body of evidence shows 

that the mTOR pathway is strongly involved in 

initiating and developing obesity and insulin 

resistance in metabolic syndrome (29, 30). mTOR 

signaling pathway is crucial for adipogenesis, and 

rapamycin interfers with the proliferation and 

differentiation of human adipocyte differentiation in 

primary culture cells (31). Furthermore, Chang et 

al. showed that rapamycin decreased obesity 

induced by a high-fat diet in mice via long-term 

inhibition of mTORC1 (32). 

mTORC1 and lipid metabolism 

mTORC1 plays a crucial role in promoting 

lipogenesis by modulating the expression of many 

lipogenic genes (33). A significant family of 

transcription factors that regulate lipid synthesis is 

the sterol regulatory element binding proteins 

(SREBPs) (33, 34). SREBPs belong to the family of 

basic helix-loop-helix-leucine zipper (bHLH-Zip) 

transcription factors. The SREBPs family has three 

closely related members: SREBP1a, SREBP1c, and 

SREBP2 (35,36). mTORC1 stimulates the 

movement, processing, and transcription of 

SREBPs. SREBPs adjust lipid homeostasis by 

regulating the expression of various enzymes 

necessary for endogenous cholesterol, fatty acid 

(FA), triacylglycerol, and phospholipid synthesis. 

SREBP-1c is required for FA synthesis and insulin-

induced glucose metabolism (especially in 

lipogenesis). In contrast, SREBP-2 is more specific 

to cholesterol synthesis. The SREBP-1a isoform 

seems to be involved in both pathways (36). In vivo 

studies have shown that mice deficient for 

mTORC1 in their liver, through raptor knockout in 
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their liver, not only are not able to induce Srebp1c 

and lipogenesis but also have decreased levels of 

both liver triglycerides and cholesterol on a 

Western diet (37-40). These fundamental roles of 

mTORC1 in lipid metabolism make it a suitable 

target for reducing lipids synthesis during diabetes 

(41). 

Role of mTORC1 in diabetic nephropathy 

Diabetic nephropathy is a significant cause of 

end-stage kidney disease, and a major health 

problem around the world (8). A primary 

complication of diabetic nephropathy is proteinuria 

caused by the destruction of the glomerular 

filtration barrier in podocytes (42). Inhibition of 

mTORC1 has been reported to cause proteinuria in 

different patients (43). mTOR function in 

podocytes is critical for the integrity of the filtration 

barrier (44). Different studies reported that the 

administration of sirolimus prevents the 

development of diabetic nephropathy in mouse 

models of both type 1 and type 2 diabetes. For 

instance, Inoki et al. found that mTORC1 activation 

was involved in many molecular events in 

podocytes, consisting of ER stress with a 

fibroblastic phenotypic change that leads to 

podocyte injury and proteinuria in mice (45). 

Furthermore, Gödel et al. proved that normal 

activation of mTORC1 has a positive function in 

podocyte participation in glomerular expansions for 

kidney development, and hyperactivation of 

mTORC1 will be accompanied by podocytes 

dysfunction and progression of diabetic 

nephropathy (46). 

Role of mTORC1 in the pathogenesis of diabetic 

retinopathy  

Diabetic retinopathy remains one of the most 

common leading causes of vision impairment in the 

world, and it is a significant consequence of 

prolonged diabetes (47). Retinal microvascular 

defects and enhanced protein degradation are the 

leading cause of retinopathy during uncontrolled 

hyperglycemia. Activation of the PI3K/Akt/mTOR 

signaling pathway has been linked to impaired 

glucose metabolism in retinal tissue (48, 49). A 

recent study suggests that Akt's interaction with Ras 

homolog gene family member B (RhoB) promotes 

endothelial cell survival and development during 

vascular genesis, which probably can lead to 

angiogenesis characteristic of diabetic microva-

scular disease (50). Therefore, it can be concluded 

that suppression of the PI3K/Akt/mTOR signaling 

pathway interrupts Akt-RhoB interaction, increases 

endothelial cell death, and will help prevent 

diabetic retinopathy. Stopping endothelial cell 

proliferation and inducing apoptosis can be 

considered a treatment model to prevent vascular 

abnormalities, which has been seen in diabetic 

retinopathy (51, 52). Also, it has been shown that 

inflammation and oxidative stress have a significant 

role in diabetic retinopathy (53, 54). In diabetic 

conditions, in the retina, advanced glycation end 

products (AGEs) generate oxidative stress, promote 

changes in proteins, and enhance the level of 

inflammatory cytokines that make changes to 

vascular function (55). A growing body of evidence 

implies that existing inflammatory processes within 

the retina make it more susceptible to the 

progression of diabetic retinopathy (56). 

Relation between mTORC1, diabetes, and in-

flammation 

Previous studies revealed the connection 

between inflammation and diabetes (57). The 

mTOR signaling pathway can be activated by 

various ligands such as glucose, growth factors, 

amino acids, and nutrients. Moreover, inflammatory 

stimuli, while attached to antigen receptors, 

cytokine, or toll-like receptors (TLRs), can also 

activate mTORC1 in the cells. At the molecular 

level, mTOR potentially regulates the activity of 

inflammatory transcription factors such as nuclear 

factor kappa B (NF-κB), signal transducer and 

activator of transcription–3 (STAT3), and some 

interferon regulatory factors in a cell-type-specific 

algorithm (58). In normal conditions, tyrosine 
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Fig.2. Role of mTOR complex 1 in diabetes complications. 

phosphorylation of insulin receptor substrate (IRS) 

proteins can activate the PI3K-Akt-mTOR pathway, 

resulting in normal insulin response in the cells. 

Serine threonine phosphorylation of IRS will cause 

negative regulation of insulin signaling pathways, 

and during this condition, insulin resistance 

happens in the body (59). Downstream effector of 

mTORC1, S6 kinase (S6K) also phosphorylates 

IRS proteins resulting in insulin resistance in the 

cells. During inflammation, activation of mTORC1 

and its effector S6K leads to phosphorylation of 

IRS-1 and insulin resistance, an important 

phenomenon in the pathophysiology of diabetes. 

The inhibition of mTORC1 with rapamycin can 

potentially reduce S6K activation, and could be 

used to treat insulin resistance in diabetes (60). 

Recent studies have shown that the mTOR 

signaling pathway plays a crucial role in regulating 

pro- and anti-inflammatory responses in immune 

cells (56). During type 1 diabetes, autoimmune 

destruction of beta-cells of the pancreas takes place. 

So, it is important to consider the mTOR signaling 

pathway as a therapeutic target in the treatment of 

type 1 diabetes (61).  

mTORC1 and oxidative stress  

Oxidative stress has been defined as an 

imbalance between increased reactive oxygen 

species (ROS) generation and reduced antioxidant 

defense systems in the body (62). ROS are 

increased during hyperglycemia and can damage 

different organs. Increased intracellular ROS can 

also trigger several pro-inflammatory pathways and 

cytokine production, activating mTORC1 and its 

effector S6K. Activated S6K phosphorylates IRS-1 

proteins and results in insulin resistance in the cells 

during diabetes (63). Also, it has been reported that 

high glucose level induces ROS formation in the 

glomerular mesangial cells, and leads not only to a 

decline of the antioxidant enzyme activity and 

glutathione (GSH) level, but also promotes NADPH 

oxidase activity, and increases the expression of 

P53 and Bax/Bcl-2 ratio resulting in apoptosis 

promotion (64). Treatment of the mesangial cells 

via rapamycin reduced oxidative stress and 

apoptosis in the cells exposed to high glucose, and 

ameliorated the effects of mTOR activation, which 

improved the complication of diabetic nephropathy 

(64, 65). This data shows that mTOR plays a key 

role in modulating ROS-induced oxidative stress in 

mesangial cells during diabetes (Figure 2). 

How to quench mTOR to prevent diabetes 

complications 

Rapalogs (including rapamycin and everol-

imus) are the first generation of mTOR inhibitors 

and were first used as immunosuppressive drugs to 

avoid transplantation rejection and then be used in  
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targeted anti-cancer kinase inhibitors are the second 

generation of mTOR inhibitors based on their 

activity to inhibit mTOR (69). Because of sequence 

similarity between mTOR and PI3K, ATP 

competitive PI3K inhibitors are now found to have 

different degrees of mTOR inhibitory effects. 

However, it has been proved that a selective mTOR 

inhibitor is better than dual function inhibitors 

because of many different functions of diverse 

isoforms of PI3K (16, 66). Two main mTOR 

inhibitors are sirolimus (rapamycin) and everolimus 

that have substantial inhibitory effects on the 

mTOR signaling pathway that may be beneficial in 

reducing diabetes complications. However, their 

use is restricted because of some adverse effects; 

therefore, it is necessary to do more studies about 

the clinical application of these drugs (67). 

Conclusions and future perspectives 

This review explained the significance of the 

mTORC1 signaling pathway in the pathophy-

siology of diabetes complications regarding the 

importance of mTORC1 in many cellular processes 

involved in diabetes complications. It seems 

necessary to develop more studies about the 

mTORC1 signaling pathway to better 

understanding the molecular mechanisms of 

development of metabolic diseases such as 

diabetes. 
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